Lund University, Division of Solid State Physics, SE-221 00 Lund, Sweden.
Biointerphases. 2007 Mar;2(1):49-55. doi: 10.1116/1.2717926.
A generic protocol for the creation of material-mediated self-assembled patterns of streptavidin, defined solely by patterns of gold and SiO(2), is presented. Protein-adsorption resistance of selected regions was obtained by material-specific adsorption of thiol-modified poly(ethylene)glycol (thiol-PEG) on gold followed by adsorption of poly-L-lysine (PLL) modified PEG (PLL-g-PEG) on SiO(2). Selective streptavidin binding to either gold or SiO(2) (or both) was ensured by introducing biotin-modified thiolated (thiol-biotin) and/or biotin-modified PLL-g-PEG (PLL-g-PEGbiotin) compounds. The introduction of biotin did not influence the protein-adsorption resistance. On the macroscopic scale, the protein-adsorption-resistant properties and the streptavidin-binding capacity were optimized using quartz crystal microbalance with dissipation monitoring. The reproduction of micrometer-scale gold patterns on SiO(2) into patterns of streptavidin was verified using fluorescence microscopy, while the compatibility of the material-specific surface-modification strategy with nanoscale features was accomplished by modifying a localized surface plasmon resonance (LSPR) active template, defined by randomly distributed nanoapertures in a thin gold film on SiO(2). The demonstrated compatibility of the latter substrate with LSPR-based label-free sensing of biorecognition reactions, combined with the fact that all compounds utilized are commercially available, makes the surface-modification protocol attractive as a generic surface modification solution for a broad range of biorecognition-based assays.
本文提出了一种通用的方法,用于制备由金和 SiO(2)图案定义的链霉亲和素的物质介导自组装图案。通过金上特异性吸附巯基化聚乙二醇(thiol-PEG)和随后在 SiO(2)上吸附聚-L-赖氨酸(PLL)修饰的聚乙二醇(PLL-g-PEG),获得了选定区域的蛋白质吸附抗性。通过引入生物素修饰的硫醇化(thiol-biotin)和/或生物素修饰的 PLL-g-PEG(PLL-g-PEGbiotin)化合物,确保了链霉亲和素选择性地结合金或 SiO(2)(或两者)。生物素的引入并不影响蛋白质吸附抗性。在宏观尺度上,使用石英晶体微天平(QCM-D)监测耗散来优化蛋白质吸附抗性和链霉亲和素结合能力。通过荧光显微镜验证了在 SiO(2)上将微米级金图案复制成链霉亲和素图案的方法,同时通过修饰局部表面等离子体共振(LSPR)活性模板来证明该材料特异性表面修饰策略与纳米级特征的兼容性,该模板由 SiO(2)上的薄金膜中随机分布的纳米孔定义。后者的衬底与基于 LSPR 的无标记生物识别反应检测的兼容性,以及所使用的所有化合物均为商业可得,使得该表面修饰方案成为基于生物识别的广泛应用的通用表面修饰解决方案。