Khan Zia, Balch Tucker, Dellaert Frank
College of Computing, Georgia Institute of Technology, Atalanta, GA 30332, USA.
IEEE Trans Pattern Anal Mach Intell. 2006 Dec;28(12):1960-72. doi: 10.1109/TPAMI.2006.247.
In several multitarget tracking applications, a target may return more than one measurement per target and interacting targets may return multiple merged measurements between targets. Existing algorithms for tracking and data association, initially applied to radar tracking, do not adequately address these types of measurements. Here, we introduce a probabilistic model for interacting targets that addresses both types of measurements simultaneously. We provide an algorithm for approximate inference in this model using a Markov chain Monte Carlo (MCMC)-based auxiliary variable particle filter. We Rao-Blackwellize the Markov chain to eliminate sampling over the continuous state space of the targets. A major contribution of this work is the use of sparse least squares updating and downdating techniques, which significantly reduce the computational cost per iteration of the Markov chain. Also, when combined with a simple heuristic, they enable the algorithm to correctly focus computation on interacting targets. We include experimental results on a challenging simulation sequence. We test the accuracy of the algorithm using two sensor modalities, video, and laser range data. We also show the algorithm exhibits real time performance on a conventional PC.
在多个多目标跟踪应用中,每个目标可能返回多个测量值,并且相互作用的目标之间可能返回多个合并测量值。最初应用于雷达跟踪的现有跟踪和数据关联算法,无法充分处理这类测量值。在此,我们引入一种用于相互作用目标的概率模型,该模型可同时处理这两类测量值。我们提供一种算法,用于在该模型中使用基于马尔可夫链蒙特卡罗(MCMC)的辅助变量粒子滤波器进行近似推断。我们对马尔可夫链进行 Rao - Blackwell 化,以消除在目标连续状态空间上的采样。这项工作的一个主要贡献是使用了稀疏最小二乘更新和降阶技术,这显著降低了马尔可夫链每次迭代的计算成本。此外,当与一种简单的启发式方法相结合时,它们使算法能够正确地将计算集中在相互作用的目标上。我们给出了在具有挑战性的模拟序列上的实验结果。我们使用视频和激光测距数据这两种传感器模式测试了算法的准确性。我们还表明该算法在传统个人计算机上具有实时性能。