Suppr超能文献

一种用于主族热化学、过渡金属键合、热化学动力学和非共价相互作用的新型局域密度泛函。

A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions.

作者信息

Zhao Yan, Truhlar Donald G

机构信息

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.

出版信息

J Chem Phys. 2006 Nov 21;125(19):194101. doi: 10.1063/1.2370993.

Abstract

We present a new local density functional, called M06-L, for main-group and transition element thermochemistry, thermochemical kinetics, and noncovalent interactions. The functional is designed to capture the main dependence of the exchange-correlation energy on local spin density, spin density gradient, and spin kinetic energy density, and it is parametrized to satisfy the uniform-electron-gas limit and to have good performance for both main-group chemistry and transition metal chemistry. The M06-L functional and 14 other functionals have been comparatively assessed against 22 energetic databases. Among the tested functionals, which include the popular B3LYP, BLYP, and BP86 functionals as well as our previous M05 functional, the M06-L functional gives the best overall performance for a combination of main-group thermochemistry, thermochemical kinetics, and organometallic, inorganometallic, biological, and noncovalent interactions. It also does very well for predicting geometries and vibrational frequencies. Because of the computational advantages of local functionals, the present functional should be very useful for many applications in chemistry, especially for simulations on moderate-sized and large systems and when long time scales must be addressed.

摘要

我们提出了一种新的局域密度泛函,称为M06-L,用于主族和过渡元素的热化学、热化学动力学以及非共价相互作用。该泛函旨在捕捉交换相关能对局部自旋密度、自旋密度梯度和自旋动能密度的主要依赖关系,并且通过参数化以满足均匀电子气极限,并在主族化学和过渡金属化学方面都具有良好的性能。已将M06-L泛函和其他14种泛函与22个能量数据库进行了比较评估。在测试的泛函中,包括常用的B3LYP、BLYP和BP86泛函以及我们之前的M05泛函,M06-L泛函在主族热化学、热化学动力学以及有机金属、无机金属、生物和非共价相互作用的综合方面表现出最佳的整体性能。它在预测几何结构和振动频率方面也表现出色。由于局域泛函的计算优势,本泛函对于化学中的许多应用应该非常有用,特别是对于中等规模和大型系统的模拟以及必须处理长时间尺度的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验