Arantes Guilherme M, Řezáč Jan
Instituto de Estudos Avançados, Universidade de São Paulo, Rua da Praça do Relógio 109, São Paulo, SP 05508-050, Brazil.
Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-900, Brazil.
J Chem Theory Comput. 2025 Jul 22;21(14):7149-7159. doi: 10.1021/acs.jctc.5c00690. Epub 2025 Jun 30.
Proton transfer reactions are among the most common chemical transformations and are central to enzymatic catalysis and bioenergetic processes. Their mechanisms are often investigated using DFT or approximate quantum chemical methods, whose accuracy directly impacts the reliability of the simulations. Here, a comprehensive set of semiempirical molecular orbital and tight-binding DFT approaches, along with recently developed machine learning (ML) potentials, are benchmarked against high-level MP2 reference data for a curated set of proton transfer reactions representative of biochemical systems. Relative energies, geometries, and dipole moments are evaluated for isolated reactions. Microsolvated reactions are also simulated using a hybrid QM/MM partition. Traditional DFT methods offer high accuracy in general but show markedly larger deviations for proton transfers involving nitrogen-containing groups. Among approximate models, RM1, PM6, PM7, DFTB2-NH, DFTB3, and GFN2-xTB show reasonable accuracy across properties, though their performance varies by chemical group. The ML-corrected (Δ-learning) model PM6-ML improves accuracy for all properties and chemical groups and transfers well to QM/MM simulations. Conversely, standalone ML potentials perform poorly for most reactions. These results provide a basis for evaluating approximate methods and selecting potentials for proton transfer simulations in complex environments.
质子转移反应是最常见的化学转化反应之一,是酶催化和生物能量过程的核心。人们经常使用密度泛函理论(DFT)或近似量子化学方法来研究它们的机制,这些方法的准确性直接影响模拟的可靠性。在这里,针对一组精心挑选的代表生化系统的质子转移反应,将一套全面的半经验分子轨道和紧束缚DFT方法,以及最近开发的机器学习(ML)势,与高水平的MP2参考数据进行了基准测试。对孤立反应的相对能量、几何结构和偶极矩进行了评估。还使用混合量子力学/分子力学(QM/MM)分区模拟了微溶剂化反应。传统的DFT方法总体上具有较高的准确性,但对于涉及含氮基团的质子转移显示出明显更大的偏差。在近似模型中,RM1、PM6、PM7、DFTB2-NH、DFTB3和GFN2-xTB在各种性质上表现出合理的准确性,尽管它们的性能因化学基团而异。经ML校正(Δ-学习)的模型PM6-ML提高了所有性质和化学基团的准确性,并且能够很好地应用于QM/MM模拟。相反,独立的ML势在大多数反应中表现不佳。这些结果为评估近似方法和选择复杂环境中质子转移模拟的势提供了基础。