Suppr超能文献

模拟事件相关电位的主成分分析和独立成分分析评估:斜交旋转与最大信息旋转对比

Evaluation of PCA and ICA of simulated ERPs: Promax vs. Infomax rotations.

作者信息

Dien Joseph, Khoe Wayne, Mangun George R

机构信息

Department of Psychology, University of Kansas, Lawrence, Kansas, USA.

出版信息

Hum Brain Mapp. 2007 Aug;28(8):742-63. doi: 10.1002/hbm.20304.

Abstract

Independent components analysis (ICA) and principal components analysis (PCA) are methods used to analyze event-related potential (ERP) and functional imaging (fMRI) data. In the present study, ICA and PCA were directly compared by applying them to simulated ERP datasets. Specifically, PCA was used to generate a subspace of the dataset followed by the application of PCA Promax or ICA Infomax rotations. The simulated datasets were composed of real background EEG activity plus two ERP simulated components. The results suggest that Promax is most effective for temporal analysis, whereas Infomax is most effective for spatial analysis. Failed analyses were examined and used to devise potential diagnostic strategies for both rotations. Finally, the results also showed that decomposition of subject averages yield better results than of grand averages across subjects.

摘要

独立成分分析(ICA)和主成分分析(PCA)是用于分析事件相关电位(ERP)和功能成像(fMRI)数据的方法。在本研究中,通过将ICA和PCA应用于模拟的ERP数据集来直接比较它们。具体而言,PCA用于生成数据集的一个子空间,随后应用PCA斜交旋转或ICA最大信息旋转。模拟数据集由真实的背景脑电图活动加上两个模拟的ERP成分组成。结果表明,斜交旋转对时间分析最有效,而最大信息旋转对空间分析最有效。对失败的分析进行了检查,并用于为两种旋转设计潜在的诊断策略。最后,结果还表明,对个体平均值进行分解比跨个体的总体平均值分解能产生更好的结果。

相似文献

1
Evaluation of PCA and ICA of simulated ERPs: Promax vs. Infomax rotations.
Hum Brain Mapp. 2007 Aug;28(8):742-63. doi: 10.1002/hbm.20304.
2
Evaluating two-step PCA of ERP data with Geomin, Infomax, Oblimin, Promax, and Varimax rotations.
Psychophysiology. 2010 Jan 1;47(1):170-83. doi: 10.1111/j.1469-8986.2009.00885.x. Epub 2009 Sep 15.
3
Decomposing ERP time-frequency energy using PCA.
Clin Neurophysiol. 2005 Jun;116(6):1314-34. doi: 10.1016/j.clinph.2005.01.019. Epub 2005 Apr 2.
7
Multimodal integration of fMRI and EEG data for high spatial and temporal resolution analysis of brain networks.
Brain Topogr. 2010 Jun;23(2):150-8. doi: 10.1007/s10548-009-0132-3. Epub 2010 Jan 6.
8
Removal of BCG artefact from concurrent fMRI-EEG recordings based on EMD and PCA.
J Neurosci Methods. 2017 Nov 1;291:150-165. doi: 10.1016/j.jneumeth.2017.08.020. Epub 2017 Aug 24.
9
Recovering Wood and McCarthy's ERP-prototypes by means of ERP-specific procrustes-rotation.
J Neurosci Methods. 2018 Feb 1;295:20-36. doi: 10.1016/j.jneumeth.2017.11.011. Epub 2017 Nov 23.
10
Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
J Neurosci Methods. 2016 Apr 1;263:103-14. doi: 10.1016/j.jneumeth.2016.02.010. Epub 2016 Feb 12.

引用本文的文献

1
Differentiating biomarker features and familial characteristics of B-SNIP psychosis Biotypes.
Transl Psychiatry. 2025 Aug 14;15(1):281. doi: 10.1038/s41398-025-03501-5.
2
Interpretable single-cell factor decomposition using sciRED.
Nat Commun. 2025 Feb 22;16(1):1878. doi: 10.1038/s41467-025-57157-2.
3
The influence of social status and promise levels in trust games: An Event-Related Potential (ERP) study.
Cogn Affect Behav Neurosci. 2025 Jan 22. doi: 10.3758/s13415-024-01259-9.
6
Brain Evoked Response Qualification Using Multi-Set Consensus Clustering: Toward Single-Trial EEG Analysis.
Brain Topogr. 2024 Nov;37(6):1010-1032. doi: 10.1007/s10548-024-01074-y. Epub 2024 Aug 20.
7
Interpretable single-cell factor decomposition using sciRED.
Res Sq. 2024 Aug 7:rs.3.rs-4819117. doi: 10.21203/rs.3.rs-4819117/v1.
8
Interpretable single-cell factor decomposition using sciRED.
bioRxiv. 2024 Dec 13:2024.08.01.605536. doi: 10.1101/2024.08.01.605536.

本文引用的文献

1
The Scree Test For The Number Of Factors.
Multivariate Behav Res. 1966 Apr 1;1(2):245-76. doi: 10.1207/s15327906mbr0102_10.
2
The Effects of Overextraction on Factor and Component Analysis.
Multivariate Behav Res. 1992 Jul 1;27(3):387-415. doi: 10.1207/s15327906mbr2703_5.
3
Localization of auditory evoked potentials related to selective intermodal attention.
J Cogn Neurosci. 1997 Nov;9(6):799-823. doi: 10.1162/jocn.1997.9.6.799.
5
Linking semantic priming effect in functional MRI and event-related potentials.
Neuroimage. 2005 Feb 1;24(3):624-34. doi: 10.1016/j.neuroimage.2004.09.008.
6
Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation.
J Cogn Neurosci. 2004 Nov;16(9):1484-92. doi: 10.1162/0898929042568532.
8
EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.
J Neurosci Methods. 2004 Mar 15;134(1):9-21. doi: 10.1016/j.jneumeth.2003.10.009.
10
Localization of the event-related potential novelty response as defined by principal components analysis.
Brain Res Cogn Brain Res. 2003 Oct;17(3):637-50. doi: 10.1016/s0926-6410(03)00188-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验