Department of Clinical Sciences and Bio-imaging, University G. D'Annunzio, Chieti, Italy.
Brain Topogr. 2010 Jun;23(2):150-8. doi: 10.1007/s10548-009-0132-3. Epub 2010 Jan 6.
Two major non-invasive brain mapping techniques, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have complementary advantages with regard to their spatial and temporal resolution. We propose an approach based on the integration of EEG and fMRI, enabling the EEG temporal dynamics of information processing to be characterized within spatially well-defined fMRI large-scale networks. First, the fMRI data are decomposed into networks by means of spatial independent component analysis (sICA), and those associated with intrinsic activity and/or responding to task performance are selected using information from the related time-courses. Next, the EEG data over all sensors are averaged with respect to event timing, thus calculating event-related potentials (ERPs). The ERPs are subjected to temporal ICA (tICA), and the resulting components are localized with the weighted minimum norm (WMNLS) algorithm using the task-related fMRI networks as priors. Finally, the temporal contribution of each ERP component in the areas belonging to the fMRI large-scale networks is estimated. The proposed approach has been evaluated on visual target detection data. Our results confirm that two different components, commonly observed in EEG when presenting novel and salient stimuli, respectively, are related to the neuronal activation in large-scale networks, operating at different latencies and associated with different functional processes.
两种主要的非侵入性脑映射技术,脑电图 (EEG) 和功能磁共振成像 (fMRI),在空间和时间分辨率方面具有互补优势。我们提出了一种基于 EEG 和 fMRI 集成的方法,使 EEG 处理信息的时间动态能够在空间上定义良好的 fMRI 大规模网络内得到描述。首先,通过空间独立成分分析 (sICA) 对 fMRI 数据进行分解,并使用相关时间序列的信息选择与内在活动相关或响应任务表现的网络。接下来,根据事件时间对所有传感器的 EEG 数据进行平均,从而计算事件相关电位 (ERP)。对 ERP 进行时间 ICA(tICA),并使用与任务相关的 fMRI 网络作为先验,使用加权最小范数 (WMNLS) 算法对得到的成分进行定位。最后,估计属于 fMRI 大规模网络的区域中每个 ERP 成分的时间贡献。所提出的方法已在视觉目标检测数据上进行了评估。我们的结果证实,当呈现新颖和突出的刺激时,EEG 中通常观察到的两个不同成分分别与大规模网络中的神经元激活有关,其潜伏期不同,与不同的功能过程相关。