Suppr超能文献

功能磁共振成像和脑电图数据的多模态整合,用于大脑网络的高空间和时间分辨率分析。

Multimodal integration of fMRI and EEG data for high spatial and temporal resolution analysis of brain networks.

机构信息

Department of Clinical Sciences and Bio-imaging, University G. D'Annunzio, Chieti, Italy.

出版信息

Brain Topogr. 2010 Jun;23(2):150-8. doi: 10.1007/s10548-009-0132-3. Epub 2010 Jan 6.

Abstract

Two major non-invasive brain mapping techniques, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have complementary advantages with regard to their spatial and temporal resolution. We propose an approach based on the integration of EEG and fMRI, enabling the EEG temporal dynamics of information processing to be characterized within spatially well-defined fMRI large-scale networks. First, the fMRI data are decomposed into networks by means of spatial independent component analysis (sICA), and those associated with intrinsic activity and/or responding to task performance are selected using information from the related time-courses. Next, the EEG data over all sensors are averaged with respect to event timing, thus calculating event-related potentials (ERPs). The ERPs are subjected to temporal ICA (tICA), and the resulting components are localized with the weighted minimum norm (WMNLS) algorithm using the task-related fMRI networks as priors. Finally, the temporal contribution of each ERP component in the areas belonging to the fMRI large-scale networks is estimated. The proposed approach has been evaluated on visual target detection data. Our results confirm that two different components, commonly observed in EEG when presenting novel and salient stimuli, respectively, are related to the neuronal activation in large-scale networks, operating at different latencies and associated with different functional processes.

摘要

两种主要的非侵入性脑映射技术,脑电图 (EEG) 和功能磁共振成像 (fMRI),在空间和时间分辨率方面具有互补优势。我们提出了一种基于 EEG 和 fMRI 集成的方法,使 EEG 处理信息的时间动态能够在空间上定义良好的 fMRI 大规模网络内得到描述。首先,通过空间独立成分分析 (sICA) 对 fMRI 数据进行分解,并使用相关时间序列的信息选择与内在活动相关或响应任务表现的网络。接下来,根据事件时间对所有传感器的 EEG 数据进行平均,从而计算事件相关电位 (ERP)。对 ERP 进行时间 ICA(tICA),并使用与任务相关的 fMRI 网络作为先验,使用加权最小范数 (WMNLS) 算法对得到的成分进行定位。最后,估计属于 fMRI 大规模网络的区域中每个 ERP 成分的时间贡献。所提出的方法已在视觉目标检测数据上进行了评估。我们的结果证实,当呈现新颖和突出的刺激时,EEG 中通常观察到的两个不同成分分别与大规模网络中的神经元激活有关,其潜伏期不同,与不同的功能过程相关。

相似文献

1
Multimodal integration of fMRI and EEG data for high spatial and temporal resolution analysis of brain networks.
Brain Topogr. 2010 Jun;23(2):150-8. doi: 10.1007/s10548-009-0132-3. Epub 2010 Jan 6.
2
Method for spatial overlap estimation of electroencephalography and functional magnetic resonance imaging responses.
J Neurosci Methods. 2019 Dec 1;328:108401. doi: 10.1016/j.jneumeth.2019.108401. Epub 2019 Aug 21.
3
EEG-fMRI reciprocal functional neuroimaging.
Clin Neurophysiol. 2010 Aug;121(8):1240-50. doi: 10.1016/j.clinph.2010.02.153. Epub 2010 Apr 8.
4
From EEG to BOLD: brain mapping and estimating transfer functions in simultaneous EEG-fMRI acquisitions.
Neuroimage. 2010 May 1;50(4):1416-26. doi: 10.1016/j.neuroimage.2010.01.075. Epub 2010 Jan 29.
5
Simultaneous EEG-fMRI: trial level spatio-temporal fusion for hierarchically reliable information discovery.
Neuroimage. 2014 Oct 1;99:28-41. doi: 10.1016/j.neuroimage.2014.05.029. Epub 2014 May 20.
6
Integration of EEG source imaging and fMRI during continuous viewing of natural movies.
Magn Reson Imaging. 2010 Oct;28(8):1135-42. doi: 10.1016/j.mri.2010.03.042. Epub 2010 Jun 25.
7
Optimizing EEG Source Reconstruction with Concurrent fMRI-Derived Spatial Priors.
Brain Topogr. 2022 May;35(3):282-301. doi: 10.1007/s10548-022-00891-3. Epub 2022 Feb 10.
8
fMRI-EEG integrated cortical source imaging by use of time-variant spatial constraints.
Neuroimage. 2008 Feb 1;39(3):1198-214. doi: 10.1016/j.neuroimage.2007.10.003. Epub 2007 Oct 12.
10
Time-frequency analysis of resting state and evoked EEG data recorded at higher magnetic fields up to 9.4 T.
J Neurosci Methods. 2015 Nov 30;255:1-11. doi: 10.1016/j.jneumeth.2015.07.011. Epub 2015 Jul 23.

引用本文的文献

1
Neuroimaging insights into the psychosocial impact of the COVID-19 pandemic: a systematic review.
Transl Psychiatry. 2025 Jul 10;15(1):236. doi: 10.1038/s41398-025-03423-2.
2
Early warning score and feasible complementary approach using artificial intelligence-based bio-signal monitoring system: a review.
Biomed Eng Lett. 2025 Jun 25;15(4):717-734. doi: 10.1007/s13534-025-00486-4. eCollection 2025 Jul.
3
AI-powered remote monitoring of brain responses to clear and incomprehensible speech via speckle pattern analysis.
J Biomed Opt. 2025 Jun;30(6):067001. doi: 10.1117/1.JBO.30.6.067001. Epub 2025 Jun 9.
8
Blind Visualization of Task-Related Networks From Visual Oddball Simultaneous EEG-fMRI Data: Spectral or Spatiospectral Model?
Front Neurol. 2021 Apr 26;12:644874. doi: 10.3389/fneur.2021.644874. eCollection 2021.
9
Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI.
Sci Rep. 2018 Jun 11;8(1):8902. doi: 10.1038/s41598-018-27187-6.
10
Optimizing Within-Subject Experimental Designs for jICA of Multi-Channel ERP and fMRI.
Front Neurosci. 2018 Jan 23;12:13. doi: 10.3389/fnins.2018.00013. eCollection 2018.

本文引用的文献

1
Large-scale brain networks account for sustained and transient activity during target detection.
Neuroimage. 2009 Jan 1;44(1):265-74. doi: 10.1016/j.neuroimage.2008.08.019. Epub 2008 Aug 28.
2
Fast and robust fixed-point algorithms for independent component analysis.
IEEE Trans Neural Netw. 1999;10(3):626-34. doi: 10.1109/72.761722.
3
Artifact removal in co-registered EEG/fMRI by selective average subtraction.
Clin Neurophysiol. 2007 Nov;118(11):2437-50. doi: 10.1016/j.clinph.2007.08.017. Epub 2007 Sep 21.
4
Unmixing concurrent EEG-fMRI with parallel independent component analysis.
Int J Psychophysiol. 2008 Mar;67(3):222-34. doi: 10.1016/j.ijpsycho.2007.04.010. Epub 2007 Aug 3.
5
Electrophysiological signatures of resting state networks in the human brain.
Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5. doi: 10.1073/pnas.0700668104. Epub 2007 Aug 1.
6
Nonparametric statistical testing of EEG- and MEG-data.
J Neurosci Methods. 2007 Aug 15;164(1):177-90. doi: 10.1016/j.jneumeth.2007.03.024. Epub 2007 Apr 10.
7
Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI.
Hum Brain Mapp. 2007 Jul;28(7):602-13. doi: 10.1002/hbm.20289.
8
Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis.
Neuroimage. 2007 Jan 15;34(2):598-607. doi: 10.1016/j.neuroimage.2006.09.037. Epub 2006 Nov 16.
9
A core system for the implementation of task sets.
Neuron. 2006 Jun 1;50(5):799-812. doi: 10.1016/j.neuron.2006.04.031.
10
Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation.
Neuroimage. 2006 May 1;30(4):1313-24. doi: 10.1016/j.neuroimage.2005.11.018. Epub 2006 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验