Suppr超能文献

无导数生成与凸帕累托最优调强放疗计划的插值

Derivative-free generation and interpolation of convex Pareto optimal IMRT plans.

作者信息

Hoffmann Aswin L, Siem Alex Y D, den Hertog Dick, Kaanders Johannes H A M, Huizenga Henk

机构信息

Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.

出版信息

Phys Med Biol. 2006 Dec 21;51(24):6349-69. doi: 10.1088/0031-9155/51/24/005. Epub 2006 Nov 23.

Abstract

In inverse treatment planning for intensity-modulated radiation therapy (IMRT), beamlet intensity levels in fluence maps of high-energy photon beams are optimized. Treatment plan evaluation criteria are used as objective functions to steer the optimization process. Fluence map optimization can be considered a multi-objective optimization problem, for which a set of Pareto optimal solutions exists: the Pareto efficient frontier (PEF). In this paper, a constrained optimization method is pursued to iteratively estimate the PEF up to some predefined error. We use the property that the PEF is convex for a convex optimization problem to construct piecewise-linear upper and lower bounds to approximate the PEF from a small initial set of Pareto optimal plans. A derivative-free Sandwich algorithm is presented in which these bounds are used with three strategies to determine the location of the next Pareto optimal solution such that the uncertainty in the estimated PEF is maximally reduced. We show that an intelligent initial solution for a new Pareto optimal plan can be obtained by interpolation of fluence maps from neighbouring Pareto optimal plans. The method has been applied to a simplified clinical test case using two convex objective functions to map the trade-off between tumour dose heterogeneity and critical organ sparing. All three strategies produce representative estimates of the PEF. The new algorithm is particularly suitable for dynamic generation of Pareto optimal plans in interactive treatment planning.

摘要

在适形调强放射治疗(IMRT)的逆向治疗计划中,高能光子束注量图中的子野强度水平会得到优化。治疗计划评估标准被用作目标函数来引导优化过程。注量图优化可被视为一个多目标优化问题,对于该问题存在一组帕累托最优解:帕累托有效前沿(PEF)。在本文中,我们采用一种约束优化方法来迭代估计PEF,直至达到某个预定义的误差。我们利用在凸优化问题中PEF是凸的这一性质,从一小组初始帕累托最优计划构建分段线性上下界来近似PEF。提出了一种无导数的三明治算法,其中这些界与三种策略一起用于确定下一个帕累托最优解的位置,从而最大程度地降低估计的PEF中的不确定性。我们表明,通过对相邻帕累托最优计划的注量图进行插值,可以获得新的帕累托最优计划的智能初始解。该方法已应用于一个简化的临床测试案例,使用两个凸目标函数来描绘肿瘤剂量异质性与关键器官保护之间的权衡。所有三种策略都能产生PEF的代表性估计。新算法特别适用于交互式治疗计划中帕累托最优计划的动态生成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验