Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States.
Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.
J Chem Theory Comput. 2018 Nov 13;14(11):5797-5814. doi: 10.1021/acs.jctc.8b00413. Epub 2018 Oct 25.
We propose a pairwise and readily parallelizable SASA-based nonpolar solvation approach for protein simulations, inspired by our previous pairwise GB polar solvation model development. In this work, we developed a novel function to estimate the atomic and molecular SASAs of proteins, which results in comparable accuracy as the LCPO algorithm in reproducing numerical icosahedral-based SASA values. Implemented in Amber software and tested on consumer GPUs, our pwSASA method reasonably reproduces LCPO simulation results, but accelerates MD simulations up to 30 times compared to the LCPO implementation, which is greatly desirable for protein simulations facing sampling challenges. The value of incorporating the nonpolar term in implicit solvent simulations is explored on a peptide fragment containing the hydrophobic core of HP36 and evaluating thermal stability profiles of four small proteins.
我们提出了一种基于对流传热的蛋白质模拟的对相关、易于并行化的非极性溶剂化方法,该方法受到我们之前的基于对流传热的极性溶剂化模型开发的启发。在这项工作中,我们开发了一种新的函数来估计蛋白质的原子和分子比表面积,该函数在重现基于数值二十面体的比表面积数值方面与 LCPO 算法具有相当的准确性。我们的 pwSASA 方法在 Amber 软件中实现,并在消费者 GPU 上进行了测试,它可以合理地再现 LCPO 模拟结果,但与 LCPO 实现相比,加速了 MD 模拟 30 倍,这对于面临采样挑战的蛋白质模拟来说是非常理想的。我们探讨了在包含 HP36 疏水核心的肽片段上加入非极性项对隐溶剂模拟的影响,并评估了四个小蛋白的热稳定性曲线。