Suppr超能文献

基于图像的核应变放大与染色质异质性相关模型的建立。

Image-derived modeling of nucleus strain amplification associated with chromatin heterogeneity.

机构信息

Biomedical Engineering, National University of Ireland Galway, Galway, Ireland.

Mechanical Engineering, Colorado State University, Fort Collins, Colorado.

出版信息

Biophys J. 2021 Apr 20;120(8):1323-1332. doi: 10.1016/j.bpj.2021.01.040. Epub 2021 Mar 4.

Abstract

Beyond the critical role of cell nuclei in gene expression and DNA replication, they also have a significant influence on cell mechanosensation and migration. Nuclear stiffness can impact force transmission and, furthermore, act as a physical barrier to translocation across tight spaces. As such, it is of wide interest to accurately characterize nucleus mechanical behavior. In this study, we present a computational investigation of the in situ deformation of a heterogeneous chondrocyte nucleus. A methodology is developed to accurately reconstruct a three-dimensional finite-element model of a cell nucleus from confocal microscopy. By incorporating the reconstructed nucleus into a chondrocyte model embedded in pericellular and extracellular matrix, we explore the relationship between spatially heterogeneous nuclear DNA content, shear stiffness, and resultant shear strain. We simulate an externally applied extracellular matrix shear deformation and compute intranuclear strain distributions, which are directly compared with corresponding experimentally measured distributions. Simulations suggest that the mechanical behavior of the nucleus is highly heterogeneous, with a nonlinear relationship between experimentally measured grayscale values and corresponding local shear moduli (μ). Three distinct phases are identified within the nucleus: a low-stiffness mRNA-rich interchromatin phase (0.17 kPa ≤ μ ≤ 0.63 kPa), an intermediate-stiffness euchromatin phase (1.48 kPa ≤ μ ≤ 2.7 kPa), and a high-stiffness heterochromatin phase (3.58 kPa ≤ μ ≤ 4.0 kPa). Our simulations also indicate that disruption of the nuclear envelope associated with lamin A/C depletion significantly increases nuclear strain in regions of low DNA concentration. We further investigate a phenotypic shift of chondrocytes to fibroblast-like cells, a signature for osteoarthritic cartilage, by increasing the contractility of the actin cytoskeleton to a level associated with fibroblasts. Peak nucleus strains increase by 35% compared to control, with the nucleus becoming more ellipsoidal. Our findings may have broad implications for current understanding of how local DNA concentrations and associated strain amplification can impact cell mechanotransduction and drive cell behavior in development, migration, and tumorigenesis.

摘要

除了细胞核在基因表达和 DNA 复制中起着关键作用外,细胞核对细胞的机械感知和迁移也有重要影响。核硬度会影响力的传递,而且,它还是穿过紧密空间的物理屏障。因此,准确描述细胞核的力学行为是很有意义的。在这项研究中,我们对异质软骨细胞核的原位变形进行了计算研究。我们开发了一种方法,可以从共聚焦显微镜准确重建细胞细胞核的三维有限元模型。通过将重建的细胞核纳入嵌入细胞周质和细胞外基质的软骨细胞模型中,我们研究了空间异质核 DNA 含量、剪切刚度和相应剪切应变之间的关系。我们模拟了细胞外基质的剪切变形,并计算了核内应变分布,然后将其与相应的实验测量分布进行了直接比较。模拟结果表明,细胞核的力学行为具有高度的不均匀性,实验测量的灰度值与相应的局部剪切模量(μ)之间存在非线性关系。在细胞核内可以识别出三个不同的阶段:低刚度富含 mRNA 的异染色质相间(0.17 kPa ≤ μ ≤ 0.63 kPa)、中等刚度常染色质相(1.48 kPa ≤ μ ≤ 2.7 kPa)和高刚度异染色质相(3.58 kPa ≤ μ ≤ 4.0 kPa)。我们的模拟还表明,与核纤层 A/C 耗竭相关的核膜破裂会显著增加低 DNA 浓度区域的核应变。我们进一步通过增加与成纤维细胞相关的肌动蛋白细胞骨架的收缩性来研究软骨细胞向成纤维样细胞的表型转变,这是骨关节炎软骨的一个特征。与对照相比,细胞核的峰值应变增加了 35%,细胞核变得更椭圆。我们的发现可能对目前关于局部 DNA 浓度和相关应变放大如何影响细胞力学转导并在发育、迁移和肿瘤发生过程中驱动细胞行为的理解有广泛的影响。

相似文献

1
Image-derived modeling of nucleus strain amplification associated with chromatin heterogeneity.
Biophys J. 2021 Apr 20;120(8):1323-1332. doi: 10.1016/j.bpj.2021.01.040. Epub 2021 Mar 4.
2
3
Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading.
Acta Biomater. 2013 Apr;9(4):5943-55. doi: 10.1016/j.actbio.2012.12.021. Epub 2012 Dec 24.
4
Chondrocyte viability is lost during high-rate impact loading by transfer of amplified strain, but not stress, to pericellular and cellular regions.
Osteoarthritis Cartilage. 2019 Dec;27(12):1822-1830. doi: 10.1016/j.joca.2019.07.018. Epub 2019 Sep 14.
5
Intranuclear strain in living cells subjected to substrate stretching: A combined experimental and computational study.
J Biomech. 2021 Apr 15;119:110292. doi: 10.1016/j.jbiomech.2021.110292. Epub 2021 Feb 14.
6
In situ mechanical properties of the chondrocyte cytoplasm and nucleus.
J Biomech. 2009 May 11;42(7):873-7. doi: 10.1016/j.jbiomech.2009.01.024. Epub 2009 Mar 3.
7
Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus.
Mol Biol Cell. 2017 Jul 7;28(14):1984-1996. doi: 10.1091/mbc.E16-09-0653. Epub 2017 Jan 5.
8
Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.
Exp Biol Med (Maywood). 2015 Nov;240(11):1543-54. doi: 10.1177/1535370215583799. Epub 2015 Apr 23.

引用本文的文献

1
Heterogeneity as a feature: unraveling chromatin's role in nuclear mechanics.
Nucleus. 2025 Dec;16(1):2545037. doi: 10.1080/19491034.2025.2545037. Epub 2025 Aug 21.
2
Nucleo-cytoskeletal coupling controls intracellular deformation partitioning during cell stretching.
R Soc Open Sci. 2025 Jul 30;12(7):250409. doi: 10.1098/rsos.250409. eCollection 2025 Jul.
3
Mechanical Forces, Nucleus, Chromosomes, and Chromatin.
Biomolecules. 2025 Mar 1;15(3):354. doi: 10.3390/biom15030354.
4
Active matter in the nucleus: Chromatin remodeling drives nuclear force dissipation.
Biophys J. 2025 Feb 4;124(3):471-473. doi: 10.1016/j.bpj.2024.12.026. Epub 2024 Dec 25.
5
The fibrous character of pericellular matrix mediates cell mechanotransduction.
J Mech Phys Solids. 2023 Nov;180. doi: 10.1016/j.jmps.2023.105423. Epub 2023 Aug 27.
6
Inhibition of chromatin condensation disrupts planar cell migration.
Nucleus. 2024 Dec;15(1):2325961. doi: 10.1080/19491034.2024.2325961. Epub 2024 Mar 11.
7
Disrupted Stiffness Ratio Alters Nuclear Mechanosensing.
Matter. 2023 Oct 4;6(10):3608-3630. doi: 10.1016/j.matt.2023.08.010. Epub 2023 Sep 1.
10
Post-Translational Modification of Lamins: Mechanisms and Functions.
Front Cell Dev Biol. 2022 May 17;10:864191. doi: 10.3389/fcell.2022.864191. eCollection 2022.

本文引用的文献

1
Revealing elasticity of largely deformed cells flowing along confining microchannels.
RSC Adv. 2018 Jan 3;8(2):1030-1038. doi: 10.1039/c7ra10750a. eCollection 2018 Jan 2.
2
Chromatin Viscoelasticity Measured by Local Dynamic Analysis.
Biophys J. 2020 May 5;118(9):2258-2267. doi: 10.1016/j.bpj.2020.04.002. Epub 2020 Apr 14.
3
Nuclear Mechanics within Intact Cells Is Regulated by Cytoskeletal Network and Internal Nanostructures.
Small. 2020 May;16(18):e1907688. doi: 10.1002/smll.201907688. Epub 2020 Apr 3.
4
Cell engineering: Biophysical regulation of the nucleus.
Biomaterials. 2020 Mar;234:119743. doi: 10.1016/j.biomaterials.2019.119743. Epub 2020 Jan 3.
5
Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints.
Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13200-13209. doi: 10.1073/pnas.1902035116. Epub 2019 Jun 17.
7
Chromatin's physical properties shape the nucleus and its functions.
Curr Opin Cell Biol. 2019 Jun;58:76-84. doi: 10.1016/j.ceb.2019.02.006. Epub 2019 Mar 16.
8
Chondrocyte dedifferentiation and osteoarthritis (OA).
Biochem Pharmacol. 2019 Jul;165:49-65. doi: 10.1016/j.bcp.2019.02.036. Epub 2019 Mar 7.
9
On the length, weight and GC content of the human genome.
BMC Res Notes. 2019 Feb 27;12(1):106. doi: 10.1186/s13104-019-4137-z.
10
Transient active force generation and stress fibre remodelling in cells under cyclic loading.
Biomech Model Mechanobiol. 2019 Aug;18(4):921-937. doi: 10.1007/s10237-019-01121-9. Epub 2019 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验