Briseno Alejandro L, Mannsfeld Stefan C B, Ling Mang M, Liu Shuhong, Tseng Ricky J, Reese Colin, Roberts Mark E, Yang Yang, Wudl Fred, Bao Zhenan
Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
Nature. 2006 Dec 14;444(7121):913-7. doi: 10.1038/nature05427.
Field-effect transistors made of organic single crystals are ideal for studying the charge transport characteristics of organic semiconductor materials. Their outstanding device performance, relative to that of transistors made of organic thin films, makes them also attractive candidates for electronic applications such as active matrix displays and sensor arrays. These applications require minimal cross-talk between neighbouring devices. In the case of thin film systems, simple patterning of the active semiconductor layer minimizes cross-talk. But when using organic single crystals, the only approach currently available for creating arrays of separate devices is manual selection and placing of individual crystals-a process prohibitive for producing devices at high density and with reasonable throughput. In contrast, inorganic crystals have been grown in extended arrays, and efficient and large-area fabrication of silicon crystalline islands with high mobilities for electronic applications has been reported. Here we describe a method for effectively fabricating large arrays of single crystals of a wide range of organic semiconductor materials directly onto transistor source-drain electrodes. We find that film domains of octadecyltriethoxysilane microcontact-printed onto either clean Si/SiO(2) surfaces or flexible plastic provide control over the nucleation of vapour-grown organic single crystals. This allows us to fabricate large arrays of high-performance organic single-crystal field-effect transistors with mobilities as high as 2.4 cm(2) V(-1) s(-1) and on/off ratios greater than 10(7), and devices on flexible substrates that retain their performance after significant bending. These results suggest that our fabrication approach constitutes a promising step that might ultimately allow us to utilize high-performance organic single-crystal field-effect transistors for large-area electronics applications.
由有机单晶体制成的场效应晶体管是研究有机半导体材料电荷传输特性的理想选择。相对于由有机薄膜制成的晶体管,它们出色的器件性能使其也成为有源矩阵显示器和传感器阵列等电子应用的有吸引力的候选者。这些应用要求相邻器件之间的串扰最小。在薄膜系统中,活性半导体层的简单图案化可使串扰最小化。但是,当使用有机单晶时,目前创建单独器件阵列的唯一方法是手动选择和放置单个晶体——这一过程对于高密度和合理产量的器件生产来说是不可行的。相比之下,无机晶体已生长成扩展阵列,并且已经报道了用于电子应用的具有高迁移率的硅晶体岛的高效大面积制造。在这里,我们描述了一种直接在晶体管源漏电极上有效制造各种有机半导体材料的大单晶阵列的方法。我们发现,微接触印刷在干净的Si/SiO₂表面或柔性塑料上的十八烷基三乙氧基硅烷薄膜畴可控制气相生长的有机单晶的成核。这使我们能够制造出高性能的有机单晶场效应晶体管大阵列,其迁移率高达2.4 cm² V⁻¹ s⁻¹,开/关比大于10⁷,并且柔性基板上的器件在大幅弯曲后仍能保持其性能。这些结果表明,我们的制造方法是一个有前途的步骤,最终可能使我们能够将高性能有机单晶场效应晶体管用于大面积电子应用。