Suppr超能文献

使用内距离进行形状分类。

Shape classification using the inner-distance.

作者信息

Ling Haibin, Jacobs David W

机构信息

Department of Computer Science, University of Maryland, College Park 20742, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Feb;29(2):286-99. doi: 10.1109/TPAMI.2007.41.

Abstract

Part structure and articulation are of fundamental importance in computer and human vision. We propose using the inner-distance to build shape descriptors that are robust to articulation and capture part structure. The inner-distance is defined as the length of the shortest path between landmark points within the shape silhouette. We show that it is articulation insensitive and more effective at capturing part structures than the Euclidean distance. This suggests that the inner-distance can be used as a replacement for the Euclidean distance to build more accurate descriptors for complex shapes, especially for those with articulated parts. In addition, texture information along the shortest path can be used to further improve shape classification. With this idea, we propose three approaches to using the inner-distance. The first method combines the inner-distance and multidimensional scaling (MDS) to build articulation invariant signatures for articulated shapes. The second method uses the inner-distance to build a new shape descriptor based on shape contexts. The third one extends the second one by considering the texture information along shortest paths. The proposed approaches have been tested on a variety of shape databases, including an articulated shape data set, MPEG7 CE-Shape-1, Kimia silhouettes, the ETH-80 data set, two leaf data sets, and a human motion silhouette data set. In all the experiments, our methods demonstrate effective performance compared with other algorithms.

摘要

部件结构和关节运动在计算机视觉和人类视觉中至关重要。我们建议使用内距离来构建对关节运动具有鲁棒性且能捕捉部件结构的形状描述符。内距离被定义为形状轮廓内地标点之间最短路径的长度。我们表明,与欧几里得距离相比,它对关节运动不敏感,并且在捕捉部件结构方面更有效。这表明内距离可用于替代欧几里得距离,为复杂形状构建更准确的描述符,特别是对于那些具有关节部件的形状。此外,沿最短路径的纹理信息可用于进一步改进形状分类。基于这一想法,我们提出了三种使用内距离的方法。第一种方法将内距离与多维缩放(MDS)相结合,为关节形状构建关节不变特征。第二种方法使用内距离基于形状上下文构建新的形状描述符。第三种方法通过考虑沿最短路径的纹理信息对第二种方法进行扩展。所提出的方法已在各种形状数据库上进行了测试,包括一个关节形状数据集、MPEG7 CE - Shape - 1、Kimia轮廓、ETH - 80数据集、两个叶子数据集以及一个人体运动轮廓数据集。在所有实验中,与其他算法相比,我们的方法都表现出了有效的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验