Suppr超能文献

增强卷积神经网络在浮游生物识别与计数中的应用。

Enhanced convolutional neural network for plankton identification and enumeration.

机构信息

Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, P.R. China.

Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland, United States of America.

出版信息

PLoS One. 2019 Jul 10;14(7):e0219570. doi: 10.1371/journal.pone.0219570. eCollection 2019.

Abstract

Despite the rapid increase in the number and applications of plankton imaging systems in marine science, processing large numbers of images remains a major challenge due to large variations in image content and quality in different marine environments. We constructed an automatic plankton image recognition and enumeration system using an enhanced Convolutional Neural Network (CNN) and examined the performance of different network structures on automatic plankton image classification. The procedure started with an adaptive thresholding approach to extract Region of Interest (ROIs) from in situ plankton images, followed by a procedure to suppress the background noise and enhance target features for each extracted ROI. The enhanced ROIs were classified into seven categories by a pre-trained classifier which was a combination of a CNN and a Support Vector Machine (SVM). The CNN was selected to improve feature description and the SVM was utilized to improve classification accuracy. A series of comparison experiments were then conducted to test the effectiveness of the pre-trained classifier including the combination of CNN and SVM versus CNN alone, and the performance of different CNN models. Compared to CNN model alone, the combination of CNN and SVM increased classification accuracy and recall rate by 7.13% and 6.41%, respectively. Among the selected CNN models, the ResNet50 performed the best with accuracy and recall at 94.52% and 94.13% respectively. The present study demonstrates that deep learning technique can improve plankton image recognition and that the results can provide useful information on the selection of different CNN models for plankton recognition. The proposed algorithm could be generally applied to images acquired from different imaging systems.

摘要

尽管浮游生物成像系统在海洋科学中的数量和应用迅速增加,但由于不同海洋环境中图像内容和质量的巨大变化,处理大量图像仍然是一个主要挑战。我们使用增强的卷积神经网络(CNN)构建了一个自动浮游生物图像识别和计数系统,并研究了不同网络结构对自动浮游生物图像分类的性能。该过程首先采用自适应阈值方法从原位浮游生物图像中提取感兴趣区域(ROI),然后采用抑制背景噪声和增强每个提取 ROI 目标特征的程序。增强的 ROI 通过预训练分类器分为七类,该分类器是 CNN 和支持向量机(SVM)的组合。选择 CNN 来改进特征描述,选择 SVM 来提高分类精度。然后进行了一系列对比实验来测试预训练分类器的有效性,包括 CNN 和 SVM 的组合与单独的 CNN 相比,以及不同 CNN 模型的性能。与单独的 CNN 模型相比,CNN 和 SVM 的组合分别将分类精度和召回率提高了 7.13%和 6.41%。在所选择的 CNN 模型中,ResNet50 的性能最佳,准确率和召回率分别为 94.52%和 94.13%。本研究表明,深度学习技术可以提高浮游生物图像识别的效果,并且结果可以为浮游生物识别中不同 CNN 模型的选择提供有用的信息。所提出的算法可以普遍应用于不同成像系统获取的图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b909/6619811/d493a1ad4116/pone.0219570.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验