Lui Kung-Jong, Chang Kuang-Chao
Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA.
J Biopharm Stat. 2013;23(4):756-73. doi: 10.1080/10543406.2013.792828.
We often employ stratified analysis to control the confounding effect due to centers in a multicenter trial or the confounding effect due to trials in a meta-analysis. On the basis of a general risk additive model, we focus discussion on interval estimation of the risk difference (RD) in repeated binary measurements under a stratified randomized clinical trial (RCT) in the presence of noncompliance. We develop five asymptotic interval estimators for the RD in closed form. These include the interval estimator using the weighted least-squares (WLS) estimator, the WLS interval estimator with tanh (-1)(x) transformation, the Mantel-Haenszel (MH) type interval estimator, the MH interval estimator with tanh (-1)(x) transformation, and the interval estimator using the idea of Fieller's theorem and a randomization-based variance. We employ Monte Carlo simulation to study and compare the finite-sample performance of these interval estimators in a variety of situations. We include an example studying the use of macrophage colony-stimulating factor to reduce the risk of febrile neutropenia events in acute myeloid leukaemia patients published elsewhere to illustrate the use of these estimators.
在多中心试验中,我们经常采用分层分析来控制因中心因素导致的混杂效应,或者在荟萃分析中控制因试验因素导致的混杂效应。基于一般风险相加模型,我们重点讨论在存在不依从性的分层随机临床试验(RCT)中,重复二元测量下风险差(RD)的区间估计。我们推导出了五个封闭形式的RD渐近区间估计量。这些包括使用加权最小二乘(WLS)估计量的区间估计量、具有tanh(-1)(x)变换的WLS区间估计量、Mantel-Haenszel(MH)型区间估计量、具有tanh(-1)(x)变换的MH区间估计量,以及使用Fieller定理思想和基于随机化的方差的区间估计量。我们采用蒙特卡罗模拟来研究和比较这些区间估计量在各种情况下的有限样本性能。我们给出一个实例,该实例研究了巨噬细胞集落刺激因子用于降低急性髓系白血病患者发热性中性粒细胞减少事件风险的情况,此实例发表于其他地方,用于说明这些估计量的应用。