Suppr超能文献

在存在不依从性的分层随机临床试验中重复二元测量下比例比的区间估计。

Interval estimation of the proportion ratio in repeated binary measurements under a stratified randomized clinical trial with noncompliance.

作者信息

Lui Kung-Jong, Chang Kuang-Chao

机构信息

Department of Mathematics and Statistics, College of Sciences, San Diego State University, San Diego, California 92182-7720, USA.

出版信息

J Biopharm Stat. 2012;22(1):109-32. doi: 10.1080/10543406.2010.508139.

Abstract

The proportion ratio (PR) of a positive response between an experimental treatment and a standard treatment (or placebo) is often used to measure the relative treatment efficacy in a randomized clinical trial (RCT). For ethical reasons, it is almost inevitable to encounter some patients not complying with their assigned treatment. Furthermore, when there are confounders in a RCT or meta-analysis, we commonly employ stratified analysis to control the confounding effects on interval estimation of the PR. On the basis of a general risk multiplicative model, we focus our discussion on interval estimation of the PR in repeated binary data under a stratified RCT with noncompliance. We develop seven asymptotic closed-form interval estimators for the PR. We apply Monte Carlo simulation to study the finite-sample performance of these interval estimators in a variety of situations. We note that the two interval estimators with the logarithmic transformation based on the commonly used weighted least squares (WLS) approach can be liberal, while the three interval estimators with the Mantel-Haenszel (MH) weight derived from various methods can consistently perform well. We also note that the two estimators with the estimated optimal weight defined in the context using Fieller's Theorem and a randomization-based approach may not necessarily produce a confidence interval preferable to the MH-type interval estimators for the PR with respect to accuracy and precision.

摘要

在随机临床试验(RCT)中,实验性治疗与标准治疗(或安慰剂)之间阳性反应的比例比(PR)常被用于衡量相对治疗效果。出于伦理原因,几乎不可避免地会遇到一些不遵守分配治疗方案的患者。此外,当RCT或荟萃分析中存在混杂因素时,我们通常采用分层分析来控制对PR区间估计的混杂效应。基于一般风险乘法模型,我们将讨论重点放在存在不依从情况的分层RCT下重复二元数据中PR的区间估计上。我们为PR开发了七个渐近封闭形式的区间估计量。我们应用蒙特卡罗模拟来研究这些区间估计量在各种情况下的有限样本性能。我们注意到,基于常用加权最小二乘法(WLS)方法的两种对数变换区间估计量可能会宽松,而从各种方法得出的具有Mantel-Haenszel(MH)权重的三种区间估计量始终表现良好。我们还注意到,在使用Fieller定理和基于随机化的方法定义的上下文中具有估计最优权重的两种估计量,就准确性和精确性而言,不一定能产生比PR的MH型区间估计量更优的置信区间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验