Whipp Brian J
Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK.
Exp Physiol. 2007 Mar;92(2):347-55. doi: 10.1113/expphysiol.2006.034363. Epub 2006 Dec 21.
During moderate exercise (below the lactate threshold, (thetaL)), muscle CO(2) production ( Q(CO2)) kinetics are monoexponential, with a time constant (tau) similar to that of O(2) consumption. Following a delay incorporating the muscle-lung vascular transit time, Q(CO2) is expressed at the lungs (V(CO2)) with an appreciably longer tau, reflecting the influence of intervening high-capacitance CO(2) stores. Above (thetaL), kinetics become complex, resulting from the conflation of the differing rates of HCO(3)(-) breakdown and degrees of compensatory hyperventilation with that of the underlying aerobic component. During incremental exercise, the increased rate of relative to pulmonary O(2) uptake (V(CO2)) can be used to quantify (thetaL) validly if aerobic and hyperventilatory sources can be ruled out, i.e. (thetaL) is then attributable to the decrease in muscle and blood [HCO(3)(-)]. In many cases, however, very rapid incrementation of work rate and/or prior depletion of CO(2) stores (by volitional or anticipatory hyperventilation) can yield a 'false positive' non-invasive estimation of (thetaL) ('pseudo-threshold') resulting from a slowing of the rate of wash-in of transient CO(2) stores.
在适度运动(低于乳酸阈,即θL)期间,肌肉二氧化碳产生量(Q(CO2))动力学呈单指数形式,其时间常数(τ)与氧气消耗量的时间常数相似。经过包含肌肉-肺血管传输时间的延迟后,Q(CO2)在肺部以明显更长的τ表现为二氧化碳排出量(V(CO2)),这反映了中间高容量二氧化碳储存的影响。高于θL时,动力学变得复杂,这是由于碳酸氢根(HCO3(-))分解速率和代偿性过度通气程度与潜在有氧成分的速率相互交织所致。在递增运动期间,如果可以排除有氧和过度通气来源,那么相对于肺部氧气摄取量(V(CO2))增加的速率可用于有效量化θL,即此时θL可归因于肌肉和血液中[HCO3(-)]的减少。然而,在许多情况下,工作速率的非常快速增加和/或二氧化碳储存的预先耗尽(通过自主或预期性过度通气)可能会由于瞬态二氧化碳储存的冲洗速率减慢而产生θL的“假阳性”非侵入性估计(“假阈值”)。