Suppr超能文献

用于治疗选择的药物基因组生物标志物分类器的验证

Validation of pharmacogenomic biomarker classifiers for treatment selection.

作者信息

Simon Richard

机构信息

Biometric Research Branch, National Cancer Institute, NIH, Bethesda, MD 20892-7434, USA.

出版信息

Cancer Biomark. 2006;2(3-4):89-96. doi: 10.3233/cbm-2006-23-402.

Abstract

Physicians need improved tools for selecting treatments for individual patients. Many syndromes traditionally viewed as individual diseases are heterogeneous in molecular pathogenesis and treatment responsiveness. This results in treatment of many patients with ineffective drugs and leads to the conduct of large clinical trials to identify small average treatment benefits for heterogeneous groups of patients. New genomic and proteomic technologies provide powerful tools for the selection of patients likely to benefit from a therapeutic without unacceptable adverse events. In spite of the large literature on developing predictive biomarkers and on statistical methodology for analysis of high dimensional data, there is considerable uncertainty about the validation of biomarker based diagnostic classifiers for treatment selection. In this paper we attempt to clarify these issues and to provide guidance on the design of clinical trials for evaluating the clinical utility and robustness of pharmacogenomic classifiers.

摘要

医生需要更好的工具来为个体患者选择治疗方案。许多传统上被视为单一疾病的综合征在分子发病机制和治疗反应性方面具有异质性。这导致许多患者使用无效药物进行治疗,并促使开展大型临床试验,以确定异质性患者群体的微小平均治疗益处。新的基因组学和蛋白质组学技术为选择可能从治疗中获益且无不可接受不良事件的患者提供了强大工具。尽管有大量关于开发预测性生物标志物以及分析高维数据的统计方法的文献,但基于生物标志物的诊断分类器用于治疗选择的验证仍存在相当大的不确定性。在本文中,我们试图阐明这些问题,并为评估药物基因组学分类器的临床效用和稳健性的临床试验设计提供指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验