Suppr超能文献

通过微调二级球相互作用增强设计的细胞色素c过氧化物酶中锰(II)的结合及锰过氧化物酶活性

Enhancing Mn(II)-Binding and Manganese Peroxidase Activity in a Designed Cytochrome c Peroxidase through Fine-Tuning Secondary-Sphere Interactions.

作者信息

Hosseinzadeh Parisa, Mirts Evan N, Pfister Thomas D, Gao Yi-Gui, Mayne Christopher, Robinson Howard, Tajkhorshid Emad, Lu Yi

机构信息

Department of Biology, Brookhaven National Laboratory , Upton, New York 11973, United States.

出版信息

Biochemistry. 2016 Mar 15;55(10):1494-502. doi: 10.1021/acs.biochem.5b01299. Epub 2016 Mar 2.

Abstract

Noncovalent second-shell interactions are important in controlling metal-binding affinity and activity in metalloenzymes, but fine-tuning these interactions in designed metalloenzymes has not been fully explored. As a result, most designed metalloenzymes have low metal-binding affinity and activity. Here we identified three mutations in the second coordination shell of an engineered Mn(II)-binding site in cytochrome c peroxidase (called MnCcP.1, containing Glu45, Glu37, and Glu181 ligands) that mimics the native manganese peroxidase (MnP), and explored their effects on both Mn(II)-binding affinity and MnP activity. First, removing a hydrogen bond to Glu45 through Tyr36Phe mutation enhanced Mn(II)-binding affinity, as evidenced by a 2.8-fold decrease in the KM of Mn(II) oxidation. Second, introducing a salt bridge through Lys179Arg mutation improved Glu35 and Glu181 coordination to Mn(II), decreasing KM 2.6-fold. Third, eliminating a steric clash that prevented Glu37 from orienting toward Mn(II) resulted in an 8.6-fold increase in kcat/KM, arising primarily from a 3.6-fold decrease in KM, with a KM value comparable to that of the native enzyme (0.28 mM vs 0.19 mM for Pleurotus eryngii MnP PS3). We further demonstrated that while the effects of Tyr36Phe and Lys179Arg mutations are additive, because involved in secondary-shell interactions to different ligands, other combinations of mutations were antagonistic because they act on different aspects of the Mn(II) coordination at the same residues. Finally, we showed that these MnCcP variants are functional models of MnP that mimic its activity in both Mn(II) oxidation and degradation of a phenolic lignin model compound and kraft lignin. In addition to achieving KM in a designed protein that is similar to the that of native enzyme, our results offer molecular insight into the role of noncovalent interactions around metal-binding sites for improving metal binding and overall activity; such insight can be applied to rationally enhance these properties in other metalloenzymes and their models.

摘要

非共价的第二配位层相互作用在控制金属酶中的金属结合亲和力和活性方面很重要,但在设计的金属酶中对这些相互作用进行微调尚未得到充分探索。因此,大多数设计的金属酶具有较低的金属结合亲和力和活性。在这里,我们在细胞色素c过氧化物酶(称为MnCcP.1,含有Glu45、Glu37和Glu181配体)的工程化Mn(II)结合位点的第二配位层中鉴定出三个突变,该位点模拟天然锰过氧化物酶(MnP),并研究了它们对Mn(II)结合亲和力和MnP活性的影响。首先,通过Tyr36Phe突变去除与Glu45的氢键增强了Mn(II)结合亲和力,这通过Mn(II)氧化的KM降低2.8倍得到证明。其次,通过Lys179Arg突变引入盐桥改善了Glu35和Glu181与Mn(II)的配位,使KM降低2.6倍。第三,消除阻止Glu37朝向Mn(II)定向的空间冲突导致kcat/KM增加8.6倍,这主要源于KM降低3.6倍,其KM值与天然酶相当(杏鲍菇MnP PS3的KM值为0.28 mM,而天然酶为0.19 mM)。我们进一步证明,虽然Tyr36Phe和Lys179Arg突变的影响是相加的,因为它们参与与不同配体的第二配位层相互作用,但其他突变组合是拮抗的,因为它们作用于同一残基处Mn(II)配位的不同方面。最后,我们表明这些MnCcP变体是MnP的功能模型,在Mn(II)氧化和酚类木质素模型化合物及硫酸盐木质素的降解中模拟其活性。除了在设计的蛋白质中实现与天然酶相似的KM外,我们的结果还提供了关于金属结合位点周围非共价相互作用对改善金属结合和整体活性作用的分子见解;这种见解可应用于合理增强其他金属酶及其模型中的这些性质。

相似文献

3
Kinetic and crystallographic studies of a redesigned manganese-binding site in cytochrome c peroxidase.
J Biol Inorg Chem. 2007 Jan;12(1):126-37. doi: 10.1007/s00775-006-0171-0. Epub 2006 Oct 5.
7
High-resolution crystal structure of manganese peroxidase: substrate and inhibitor complexes.
Biochemistry. 2005 May 3;44(17):6463-70. doi: 10.1021/bi047318e.
9
Resonance Raman spectroscopy of cytochrome c peroxidase variants that mimic manganese peroxidase.
J Biol Inorg Chem. 2003 Sep;8(7):699-706. doi: 10.1007/s00775-003-0460-9. Epub 2003 Jul 9.
10
pH-linked binding of Mn(II) to manganese peroxidase.
Biochemistry. 1998 May 12;37(19):6767-71. doi: 10.1021/bi972932u.

引用本文的文献

2
A designed Copper Histidine-brace enzyme for oxidative depolymerization of polysaccharides as a model of lytic polysaccharide monooxygenase.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2308286120. doi: 10.1073/pnas.2308286120. Epub 2023 Oct 16.
3
Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.
Chem Rev. 2022 Jul 27;122(14):11974-12045. doi: 10.1021/acs.chemrev.2c00106. Epub 2022 Jul 11.
5
A Binuclear Cu Center Designed in an All α-Helical Protein Scaffold.
J Am Chem Soc. 2020 Aug 12;142(32):13779-13794. doi: 10.1021/jacs.0c04226. Epub 2020 Jul 29.
6
An evolutionary path to altered cofactor specificity in a metalloenzyme.
Nat Commun. 2020 Jun 1;11(1):2738. doi: 10.1038/s41467-020-16478-0.
7
An efficient, step-economical strategy for the design of functional metalloproteins.
Nat Chem. 2019 May;11(5):434-441. doi: 10.1038/s41557-019-0218-9. Epub 2019 Feb 18.
8
Design of Heteronuclear Metalloenzymes.
Methods Enzymol. 2016;580:501-37. doi: 10.1016/bs.mie.2016.05.050. Epub 2016 Jul 26.
9
Design and engineering of artificial oxygen-activating metalloenzymes.
Chem Soc Rev. 2016 Sep 21;45(18):5020-54. doi: 10.1039/c5cs00923e. Epub 2016 Jun 24.

本文引用的文献

1
Catalytic Transformation of Lignin for the Production of Chemicals and Fuels.
Chem Rev. 2015 Nov 11;115(21):11559-624. doi: 10.1021/acs.chemrev.5b00155. Epub 2015 Oct 19.
2
Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics.
Biochim Biophys Acta. 2016 May;1857(5):557-581. doi: 10.1016/j.bbabio.2015.08.006. Epub 2015 Aug 21.
4
Design of allosterically regulated protein catalysts.
Biochemistry. 2015 Feb 24;54(7):1444-56. doi: 10.1021/bi5015248. Epub 2015 Feb 12.
5
Catalytic efficiency of designed catalytic proteins.
Curr Opin Struct Biol. 2014 Aug;27:113-21. doi: 10.1016/j.sbi.2014.06.006. Epub 2014 Jul 19.
6
Heme enzymes. Neutron cryo-crystallography captures the protonation state of ferryl heme in a peroxidase.
Science. 2014 Jul 11;345(6193):193-7. doi: 10.1126/science.1254398. Epub 2014 Jul 10.
8
Mechanism of nitrogen fixation by nitrogenase: the next stage.
Chem Rev. 2014 Apr 23;114(8):4041-62. doi: 10.1021/cr400641x. Epub 2014 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验