Suppr超能文献

二氢硫辛酰胺乙酰转移酶是一种新型的代谢长寿因子,是卡路里限制介导的寿命延长所必需的。

The dihydrolipoamide acetyltransferase is a novel metabolic longevity factor and is required for calorie restriction-mediated life span extension.

作者信息

Easlon Erin, Tsang Felicia, Dilova Ivanka, Wang Chen, Lu Shu-Ping, Skinner Craig, Lin Su-Ju

机构信息

Section of Microbiology, University of California, Davis, California 95616, USA.

出版信息

J Biol Chem. 2007 Mar 2;282(9):6161-71. doi: 10.1074/jbc.M607661200. Epub 2007 Jan 2.

Abstract

Calorie restriction (CR) extends life span in a wide variety of species. Recent studies suggest that an increase in mitochondrial metabolism mediates CR-induced life span extension. Here we present evidence that Lat1 (dihydrolipoamide acetyltransferase), the E2 component of the mitochondrial pyruvate dehydrogenase complex, is a novel metabolic longevity factor in the CR pathway. Deleting the LAT1 gene abolishes life span extension induced by CR. Overexpressing Lat1 extends life span, and this life span extension is not further increased by CR. Similar to CR, life span extension by Lat1 overexpression largely requires mitochondrial respiration, indicating that mitochondrial metabolism plays an important role in CR. Interestingly, Lat1 overexpression does not require the Sir2 family to extend life span, suggesting that Lat1 mediates a branch of the CR pathway that functions in parallel to the Sir2 family. Lat1 is also a limiting longevity factor in nondividing cells in that overexpressing Lat1 extends cell survival during prolonged culture at stationary phase. Our studies suggest that Lat1 overexpression extends life span by increasing metabolic fitness of the cell. CR may therefore also extend life span and ameliorate age-associated diseases by increasing metabolic fitness through regulating central metabolic enzymes.

摘要

热量限制(CR)可延长多种物种的寿命。最近的研究表明,线粒体代谢的增加介导了CR诱导的寿命延长。在此,我们提供证据表明,线粒体丙酮酸脱氢酶复合体的E2组分Lat1(二氢硫辛酰胺乙酰转移酶)是CR途径中一种新的代谢长寿因子。删除LAT1基因可消除CR诱导的寿命延长。过表达Lat1可延长寿命,且CR不会进一步增加这种寿命延长。与CR相似,过表达Lat1导致的寿命延长在很大程度上依赖线粒体呼吸,这表明线粒体代谢在CR中起重要作用。有趣的是,过表达Lat1延长寿命并不需要Sir2家族,这表明Lat1介导了CR途径中与Sir2家族平行发挥作用的一个分支。Lat1也是非分裂细胞中的一个限制寿命的因子,因为过表达Lat1可延长静止期长时间培养期间的细胞存活。我们的研究表明,过表达Lat1通过提高细胞的代谢适应性来延长寿命。因此,CR也可能通过调节中心代谢酶来提高代谢适应性,从而延长寿命并改善与年龄相关的疾病。

相似文献

3
Increased life span due to calorie restriction in respiratory-deficient yeast.
PLoS Genet. 2005 Nov;1(5):e69. doi: 10.1371/journal.pgen.0010069. Epub 2005 Nov 25.
4
HST2 mediates SIR2-independent life-span extension by calorie restriction.
Science. 2005 Sep 16;309(5742):1861-4. doi: 10.1126/science.1113611. Epub 2005 Jul 28.
5
Sir2 mediates longevity in the fly through a pathway related to calorie restriction.
Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15998-6003. doi: 10.1073/pnas.0404184101. Epub 2004 Nov 1.
6
Effects of calorie restriction on life span of microorganisms.
Appl Microbiol Biotechnol. 2010 Oct;88(4):817-28. doi: 10.1007/s00253-010-2824-8. Epub 2010 Aug 19.
7
Calorie restriction and the nutrient sensing signaling pathways.
Cell Mol Life Sci. 2007 Mar;64(6):752-67. doi: 10.1007/s00018-007-6381-y.
8
Mitochondria-mediated hormetic response in life span extension of calorie-restricted Saccharomyces cerevisiae.
Age (Dordr). 2011 Jun;33(2):143-54. doi: 10.1007/s11357-010-9169-1. Epub 2010 Jul 17.
9
Long-lived Indy and calorie restriction interact to extend life span.
Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9262-7. doi: 10.1073/pnas.0904115106. Epub 2009 May 22.
10
Comment on "HST2 mediates SIR2-independent life-span extension by calorie restriction".
Science. 2006 Jun 2;312(5778):1312; author reply 1312. doi: 10.1126/science.1124608.

引用本文的文献

2
Microbiome reduction prevents lipid accumulation during early diapause in the northern house mosquito, Culex pipiens pipiens.
J Insect Physiol. 2021 Oct;134:104295. doi: 10.1016/j.jinsphys.2021.104295. Epub 2021 Aug 17.
4
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species.
Ageing Res Rev. 2020 Dec;64:101188. doi: 10.1016/j.arr.2020.101188. Epub 2020 Oct 5.
5
N-terminal protein acetylation by NatB modulates the levels of Nmnats, the NAD biosynthetic enzymes in .
J Biol Chem. 2020 May 22;295(21):7362-7375. doi: 10.1074/jbc.RA119.011667. Epub 2020 Apr 16.
6
Metabolic control by sirtuins and other enzymes that sense NAD, NADH, or their ratio.
Biochim Biophys Acta Bioenerg. 2017 Dec;1858(12):991-998. doi: 10.1016/j.bbabio.2017.09.005. Epub 2017 Sep 22.
7
Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD homeostasis and contributes to longevity.
Front Biol (Beijing). 2015 Aug;10(4):333-357. doi: 10.1007/s11515-015-1367-x. Epub 2015 Jul 30.
8
Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH.
J Biol Chem. 2016 Mar 25;291(13):7128-41. doi: 10.1074/jbc.M115.668699. Epub 2016 Feb 9.
9
Reduced Ssy1-Ptr3-Ssy5 (SPS) signaling extends replicative life span by enhancing NAD+ homeostasis in Saccharomyces cerevisiae.
J Biol Chem. 2015 May 15;290(20):12753-64. doi: 10.1074/jbc.M115.644534. Epub 2015 Mar 30.
10
Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.
DNA Repair (Amst). 2014 Nov;23:49-58. doi: 10.1016/j.dnarep.2014.07.009. Epub 2014 Aug 2.

本文引用的文献

1
Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases.
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10230-10235. doi: 10.1073/pnas.0604392103. Epub 2006 Jun 21.
2
Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2.
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10224-10229. doi: 10.1073/pnas.0603968103. Epub 2006 Jun 20.
3
Energy deregulation: licensing tumors to grow.
Science. 2006 May 26;312(5777):1158-9. doi: 10.1126/science.312.5777.1158.
4
YIL042c and YOR090c encode the kinase and phosphatase of the Saccharomyces cerevisiae pyruvate dehydrogenase complex.
FEBS Lett. 2006 May 15;580(11):2553-60. doi: 10.1016/j.febslet.2006.04.002. Epub 2006 Apr 12.
5
Regulation of the pyruvate dehydrogenase complex.
Biochem Soc Trans. 2006 Apr;34(Pt 2):217-22. doi: 10.1042/BST20060217.
6
HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption.
Cell Metab. 2006 Mar;3(3):187-97. doi: 10.1016/j.cmet.2006.01.012.
8
Increase in activity during calorie restriction requires Sirt1.
Science. 2005 Dec 9;310(5754):1641. doi: 10.1126/science.1118357.
9
Increased life span due to calorie restriction in respiratory-deficient yeast.
PLoS Genet. 2005 Nov;1(5):e69. doi: 10.1371/journal.pgen.0010069. Epub 2005 Nov 25.
10
Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients.
Science. 2005 Nov 18;310(5751):1193-6. doi: 10.1126/science.1115535.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验