González-Díaz Humberto, Bonet Isis, Terán Carmen, De Clercq Erik, Bello Rafael, García Maria M, Santana Lourdes, Uriarte Eugenio
Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Eur J Med Chem. 2007 May;42(5):580-5. doi: 10.1016/j.ejmech.2006.11.016. Epub 2006 Dec 15.
Developing a model for predicting anticancer activity of any classes of organic compounds based on molecular structure is very important goal for medicinal chemist. Different molecular descriptors can be used to solve this problem. Stochastic molecular descriptors so-called the MARCH-INSIDE approach, shown to be very successful in drug design. Nevertheless, the structural diversity of compounds is so vast that we may need non-linear models such as artificial neural networks (ANN) instead of linear ones. SmartMLP-ANN analysis used to model the anticancer activity of organic compounds has shown high average accuracy of 93.79% (train performance) and predictability of 90.88% (validation performance) for the 8:3-MLP topology with different training and predicting series. This ANN model favourably compares with respect to a previous linear discriminant analysis (LDA) model [H. González-Díaz et al., J. Mol. Model 9 (2003) 395] that showed only 80.49% of accuracy and 79.34% of predictability. The present SmartMLP approach employed shorter training times of only 10h while previous models give accuracies of 70-89% only after 25-46 h of training. In order to illustrate the practical use of the model in bioorganic medicinal chemistry, we report the in silico prediction, and in vitro evaluation of six new synthetic tegafur analogues having IC(50) values in a broad range between 37.1 and 138 microgmL(-1) for leukemia (L1210/0) and human T-lymphocyte (Molt4/C8, CEM/0) cells. Theoretical predictions coincide very well with experimental results.
基于分子结构开发用于预测任何有机化合物抗癌活性的模型,是药物化学家非常重要的目标。可以使用不同的分子描述符来解决这个问题。随机分子描述符即所谓的MARCH-INSIDE方法,在药物设计中已证明非常成功。然而,化合物的结构多样性非常大,以至于我们可能需要非线性模型,如人工神经网络(ANN),而不是线性模型。用于对有机化合物的抗癌活性进行建模的SmartMLP-ANN分析表明,对于具有不同训练和预测序列的8:3-MLP拓扑结构,其平均准确率高达93.79%(训练性能),预测能力为90.88%(验证性能)。该人工神经网络模型与之前的线性判别分析(LDA)模型[H. González-Díaz等人,《分子模型杂志》9(2003年)395]相比具有优势,后者的准确率仅为80.49%,预测能力为79.34%。目前的SmartMLP方法训练时间更短,仅需10小时,而之前的模型在训练25 - 46小时后准确率仅为70 - 89%。为了说明该模型在生物有机药物化学中的实际应用,我们报告了六种新合成的替加氟类似物的计算机模拟预测和体外评估,这些类似物对白血病(L1210/0)和人T淋巴细胞(Molt4/C8,CEM/0)细胞的IC(50)值在37.1至138 microgmL(-1)的广泛范围内。理论预测与实验结果非常吻合。