Suppr超能文献

使用基于指纹的人工神经网络(FANN-QSAR)进行配体生物活性预测。

Ligand biological activity predictions using fingerprint-based artificial neural networks (FANN-QSAR).

作者信息

Myint Kyaw Z, Xie Xiang-Qun

机构信息

NIDA Center of Excellence for Computational Chemogenomics Drug Abuse Research, Computational Chemical Genomics Screening Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,

出版信息

Methods Mol Biol. 2015;1260:149-64. doi: 10.1007/978-1-4939-2239-0_9.

Abstract

This chapter focuses on the fingerprint-based artificial neural networks QSAR (FANN-QSAR) approach to predict biological activities of structurally diverse compounds. Three types of fingerprints, namely ECFP6, FP2, and MACCS, were used as inputs to train the FANN-QSAR models. The results were benchmarked against known 2D and 3D QSAR methods, and the derived models were used to predict cannabinoid (CB) ligand binding activities as a case study. In addition, the FANN-QSAR model was used as a virtual screening tool to search a large NCI compound database for lead cannabinoid compounds. We discovered several compounds with good CB2 binding affinities ranging from 6.70 nM to 3.75 μM. The studies proved that the FANN-QSAR method is a useful approach to predict bioactivities or properties of ligands and to find novel lead compounds for drug discovery research.

摘要

本章重点介绍基于指纹的人工神经网络定量构效关系(FANN-QSAR)方法,以预测结构多样的化合物的生物活性。使用三种类型的指纹,即ECFP6、FP2和MACCS,作为输入来训练FANN-QSAR模型。将结果与已知的二维和三维QSAR方法进行基准比较,并将所得模型用于预测大麻素(CB)配体结合活性作为案例研究。此外,FANN-QSAR模型用作虚拟筛选工具,在大型NCI化合物数据库中搜索潜在的大麻素先导化合物。我们发现了几种具有良好CB2结合亲和力的化合物,范围从6.70 nM到3.75 μM。研究证明,FANN-QSAR方法是预测配体生物活性或性质以及寻找药物发现研究新先导化合物的有用方法。

相似文献

1
Ligand biological activity predictions using fingerprint-based artificial neural networks (FANN-QSAR).
Methods Mol Biol. 2015;1260:149-64. doi: 10.1007/978-1-4939-2239-0_9.
2
Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions.
Mol Pharm. 2012 Oct 1;9(10):2912-23. doi: 10.1021/mp300237z. Epub 2012 Aug 31.
8
Combined 3D QSAR and molecular docking studies to reveal novel cannabinoid ligands with optimum binding activity.
Bioorg Med Chem Lett. 2007 Dec 15;17(24):6754-63. doi: 10.1016/j.bmcl.2007.10.044. Epub 2007 Oct 17.
10
Fragment-similarity-based QSAR (FS-QSAR) algorithm for ligand biological activity predictions.
SAR QSAR Environ Res. 2011 Jun;22(3):385-410. doi: 10.1080/1062936X.2011.569943.

引用本文的文献

1
Transparent Machine Learning Model to Understand Drug Permeability through the Blood-Brain Barrier.
J Chem Inf Model. 2024 Dec 9;64(23):8718-8728. doi: 10.1021/acs.jcim.4c01217. Epub 2024 Nov 18.
2
Opportunities and challenges in application of artificial intelligence in pharmacology.
Pharmacol Rep. 2023 Feb;75(1):3-18. doi: 10.1007/s43440-022-00445-1. Epub 2023 Jan 9.
3
GGL-Tox: Geometric Graph Learning for Toxicity Prediction.
J Chem Inf Model. 2021 Apr 26;61(4):1691-1700. doi: 10.1021/acs.jcim.0c01294. Epub 2021 Mar 15.
4
The Study on the hERG Blocker Prediction Using Chemical Fingerprint Analysis.
Molecules. 2020 Jun 4;25(11):2615. doi: 10.3390/molecules25112615.
5
Receptor Binding Affinities of Synthetic Cannabinoids Determined by Non-Isotopic Receptor Binding Assay.
Toxicol Res. 2019 Jan;35(1):37-44. doi: 10.5487/TR.2019.35.1.037. Epub 2018 Jan 15.
6
Development and Testing of Druglike Screening Libraries.
J Chem Inf Model. 2019 Jan 28;59(1):53-65. doi: 10.1021/acs.jcim.8b00537. Epub 2019 Jan 3.

本文引用的文献

1
Linear and Nonlinear Support Vector Machine for the Classification of Human 5-HT1A Ligand Functionality.
Mol Inform. 2012 Jan;31(1):85-95. doi: 10.1002/minf.201100126. Epub 2012 Jan 13.
4
LiCABEDS II. Modeling of ligand selectivity for G-protein-coupled cannabinoid receptors.
J Chem Inf Model. 2013 Jan 28;53(1):11-26. doi: 10.1021/ci3003914. Epub 2013 Jan 15.
5
A targeted library screen reveals a new inhibitor scaffold for protein kinase D.
PLoS One. 2012;7(9):e44653. doi: 10.1371/journal.pone.0044653. Epub 2012 Sep 18.
6
Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions.
Mol Pharm. 2012 Oct 1;9(10):2912-23. doi: 10.1021/mp300237z. Epub 2012 Aug 31.
8
Open Babel: An open chemical toolbox.
J Cheminform. 2011 Oct 7;3:33. doi: 10.1186/1758-2946-3-33.
9
Collation and data-mining of literature bioactivity data for drug discovery.
Biochem Soc Trans. 2011 Oct;39(5):1365-70. doi: 10.1042/BST0391365.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验