Foster Mark P, McElroy Craig A, Amero Carlos D
Department of Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, USA.
Biochemistry. 2007 Jan 16;46(2):331-40. doi: 10.1021/bi0621314.
Solution NMR spectroscopy represents a powerful tool for examining the structure and function of biological macromolecules. The advent of multidimensional (2D-4D) NMR, together with the widespread use of uniform isotopic labeling of proteins and RNA with the NMR-active isotopes, 15N and 13C, opened the door to detailed analyses of macromolecular structure, dynamics, and interactions of smaller macromolecules (< approximately 25 kDa). Over the past 10 years, advances in NMR and isotope labeling methods have expanded the range of NMR-tractable targets by at least an order of magnitude. Here we briefly describe the methodological advances that allow NMR spectroscopy of large macromolecules and their complexes and provide a perspective on the wide range of applications of NMR to biochemical problems.
溶液核磁共振波谱是研究生物大分子结构和功能的有力工具。多维(二维至四维)核磁共振的出现,以及使用具有核磁共振活性的同位素15N和13C对蛋白质和RNA进行广泛的均匀同位素标记,为详细分析大分子结构、动力学以及较小大分子(<约25 kDa)的相互作用打开了大门。在过去十年中,核磁共振和同位素标记方法的进展使可通过核磁共振研究的目标范围至少扩大了一个数量级。在此,我们简要描述了使大型大分子及其复合物能够进行核磁共振波谱分析的方法学进展,并对核磁共振在生化问题中的广泛应用前景进行了展望。