Suppr超能文献

结合 NMR 化学位移数据和分子动力学模拟确定具有挑战性的蛋白-肽复合物的结构。

Structure Determination of Challenging Protein-Peptide Complexes Combining NMR Chemical Shift Data and Molecular Dynamics Simulations.

机构信息

The Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.

Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.

出版信息

J Chem Inf Model. 2023 Apr 10;63(7):2058-2072. doi: 10.1021/acs.jcim.2c01595. Epub 2023 Mar 29.

Abstract

Intrinsically disordered regions of proteins often mediate important protein-protein interactions. However, the folding-upon-binding nature of many polypeptide-protein interactions limits the ability of modeling tools to predict the three-dimensional structures of such complexes. To address this problem, we have taken a tandem approach combining NMR chemical shift data and molecular simulations to determine the structures of peptide-protein complexes. Here, we use the MELD (Modeling Employing Limited Data) technique applied to polypeptide complexes formed with the extraterminal domain (ET) of bromo and extraterminal domain (BET) proteins, which exhibit a high degree of binding plasticity. This system is particularly challenging as the binding process includes allosteric changes across the ET receptor upon binding, and the polypeptide binding partners can adopt different conformations (e.g., helices and hairpins) in the complex. In a blind study, the new approach successfully modeled bound-state conformations and binding poses, using only protein receptor backbone chemical shift data, in excellent agreement with experimentally determined structures for moderately tight ( ∼100 nM) binders. The hybrid MELD + NMR approach required additional peptide ligand chemical shift data for weaker ( ∼250 μM) peptide binding partners. AlphaFold also successfully predicts the structures of some of these peptide-protein complexes. However, whereas AlphaFold can provide qualitative peptide rankings, MELD can directly estimate relative binding affinities. The hybrid MELD + NMR approach offers a powerful new tool for structural analysis of protein-polypeptide complexes involving disorder-to-order transitions upon complex formation, which are not successfully modeled with most other complex prediction methods, providing both the 3D structures of peptide-protein complexes and their relative binding affinities.

摘要

蛋白质的无规则区域通常介导重要的蛋白质-蛋白质相互作用。然而,许多多肽-蛋白质相互作用的折叠结合性质限制了建模工具预测这些复合物的三维结构的能力。为了解决这个问题,我们采用了一种串联方法,将 NMR 化学位移数据和分子模拟结合起来,确定肽-蛋白质复合物的结构。在这里,我们使用适用于与溴和端外域(BET)蛋白的端外域(ET)形成的多肽复合物的 MELD(有限数据建模)技术,该技术表现出高度的结合可塑性。该系统特别具有挑战性,因为结合过程包括结合时 ET 受体的变构变化,并且多肽结合伴侣在复合物中可以采用不同的构象(例如,螺旋和发夹)。在一项盲法研究中,该新方法仅使用蛋白质受体骨架化学位移数据,成功地模拟了结合态构象和结合构象,与实验确定的中等紧密(约 100 nM)结合物的结构非常吻合。混合 MELD + NMR 方法需要额外的肽配体化学位移数据用于较弱(约 250 μM)的肽结合物。AlphaFold 也成功地预测了这些肽-蛋白质复合物中的一些结构。然而,虽然 AlphaFold 可以提供肽的定性排序,但 MELD 可以直接估计相对结合亲和力。混合 MELD + NMR 方法为涉及无序到有序转变的蛋白质-多肽复合物的结构分析提供了一种强大的新工具,这是大多数其他复合物预测方法无法成功模拟的,提供了肽-蛋白质复合物的 3D 结构及其相对结合亲和力。

相似文献

1
Structure Determination of Challenging Protein-Peptide Complexes Combining NMR Chemical Shift Data and Molecular Dynamics Simulations.
J Chem Inf Model. 2023 Apr 10;63(7):2058-2072. doi: 10.1021/acs.jcim.2c01595. Epub 2023 Mar 29.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
7
Exploring binding positions and backbone conformations of peptide ligands of proteins with a backbone-centred statistical energy function.
J Comput Aided Mol Des. 2023 Oct;37(10):463-478. doi: 10.1007/s10822-023-00518-0. Epub 2023 Jul 27.
8
Ranking Peptide Binders by Affinity with AlphaFold.
Angew Chem Int Ed Engl. 2023 Feb 6;62(7):e202213362. doi: 10.1002/anie.202213362. Epub 2023 Jan 12.
10
Molecular Simulations Identify Binding Poses and Approximate Affinities of Stapled α-Helical Peptides to MDM2 and MDMX.
J Chem Theory Comput. 2017 Feb 14;13(2):863-869. doi: 10.1021/acs.jctc.6b00978. Epub 2017 Jan 19.

引用本文的文献

2
PERRC: Protease Engineering with Reactant Residence Time Control.
ACS Synth Biol. 2025 Jun 20;14(6):2241-2253. doi: 10.1021/acssynbio.5c00154. Epub 2025 May 19.
3
PERRC: Protease Engineering with Reactant Residence Time Control.
bioRxiv. 2025 Mar 4:2025.03.02.641063. doi: 10.1101/2025.03.02.641063.
4
MELD in Action: Harnessing Data to Accelerate Molecular Dynamics.
J Chem Inf Model. 2025 Feb 24;65(4):1685-1693. doi: 10.1021/acs.jcim.4c02108. Epub 2025 Feb 2.
6
Protein Retrieval via Integrative Molecular Ensembles (PRIME) through Extended Similarity Indices.
J Chem Theory Comput. 2024 Jul 23;20(14):6303-6315. doi: 10.1021/acs.jctc.4c00362. Epub 2024 Jul 8.
7
Structural information in therapeutic peptides: Emerging applications in biomedicine.
FEBS Open Bio. 2025 Feb;15(2):254-268. doi: 10.1002/2211-5463.13847. Epub 2024 Jun 14.
8
A Computational Pipeline for Accurate Prioritization of Protein-Protein Binding Candidates in High-Throughput Protein Libraries.
Angew Chem Int Ed Engl. 2024 Jun 10;63(24):e202405767. doi: 10.1002/anie.202405767. Epub 2024 May 8.
10
Modelling peptide-protein complexes: docking, simulations and machine learning.
QRB Discov. 2022 Sep 19;3:e17. doi: 10.1017/qrd.2022.14. eCollection 2022.

本文引用的文献

1
State-of-the-Art Estimation of Protein Model Accuracy Using AlphaFold.
Phys Rev Lett. 2022 Dec 2;129(23):238101. doi: 10.1103/PhysRevLett.129.238101.
2
Ranking Peptide Binders by Affinity with AlphaFold.
Angew Chem Int Ed Engl. 2023 Feb 6;62(7):e202213362. doi: 10.1002/anie.202213362. Epub 2023 Jan 12.
3
ColabFold: making protein folding accessible to all.
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
4
Harnessing protein folding neural networks for peptide-protein docking.
Nat Commun. 2022 Jan 10;13(1):176. doi: 10.1038/s41467-021-27838-9.
5
Simultaneous Assignment and Structure Determination of Proteins From Sparsely Labeled NMR Datasets.
Front Mol Biosci. 2021 Nov 24;8:774394. doi: 10.3389/fmolb.2021.774394. eCollection 2021.
6
Accurate prediction of protein structures and interactions using a three-track neural network.
Science. 2021 Aug 20;373(6557):871-876. doi: 10.1126/science.abj8754. Epub 2021 Jul 15.
7
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
8
A common binding motif in the ET domain of BRD3 forms polymorphic structural interfaces with host and viral proteins.
Structure. 2021 Aug 5;29(8):886-898.e6. doi: 10.1016/j.str.2021.01.010. Epub 2021 Feb 15.
9
Hybrid methods for combined experimental and computational determination of protein structure.
J Chem Phys. 2020 Dec 28;153(24):240901. doi: 10.1063/5.0026025.
10
Large-Scale Assessment of Binding Free Energy Calculations in Active Drug Discovery Projects.
J Chem Inf Model. 2020 Nov 23;60(11):5457-5474. doi: 10.1021/acs.jcim.0c00900. Epub 2020 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验