Suppr超能文献

硒代蛋氨酸侧链辐射损伤速率的X射线吸收近边结构测量

XANES measurements of the rate of radiation damage to selenomethionine side chains.

作者信息

Holton James M

机构信息

Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2330, USA.

出版信息

J Synchrotron Radiat. 2007 Jan;14(Pt 1):51-72. doi: 10.1107/S0909049506048898. Epub 2006 Dec 15.

Abstract

The radiation-induced disordering of selenomethionine (SeMet) side chains represents a significant impediment to protein structure solution. Not only does the increased B-factor of these sites result in a serious drop in phasing power, but some sites decay much faster than others in the same unit cell. These radio-labile SeMet side chains decay faster than high-order diffraction spots with dose, making it difficult to detect this kind of damage by inspection of the diffraction pattern. The selenium X-ray absorbance near-edge spectrum (XANES) from samples containing SeMet was found to change significantly after application of X-ray doses of 10-100 MGy. Most notably, the sharp ;white line' feature near the canonical Se edge disappears. The change was attributed to breakage of the Cgamma-Se bond in SeMet. This spectral change was used as a probe to measure the decay rate of SeMet with X-ray dose in cryo-cooled samples. Two protein crystal types and 15 solutions containing free SeMet amino acid were examined. The damage rate was influenced by the chemical and physical condition of the sample, and the half-decaying dose for the selenium XANES signal ranged from 5 to 43 MGy. These decay rates were 34- to 3.8-fold higher than the rate at which the Se atoms interacted directly with X-ray photons, so the damage mechanism must be a secondary effect. Samples that cooled to a more crystalline state generally decayed faster than samples that cooled to an amorphous solid. The single exception was a protein crystal where a nanocrystalline cryoprotectant had a protective effect. Lowering the pH, especially with ascorbic or nitric acids, had a protective effect, and SeMet lifetime increased monotonically with decreasing sample temperature (down to 93 K). The SeMet lifetime in one protein crystal was the same as that of the free amino acid, and the longest SeMet lifetime measured was found in the other protein crystal type. This protection was found to arise from the folded structure of the protein molecule. A mechanism to explain observed decay rates involving the damaging species following the electric field lines around protein molecules is proposed.

摘要

辐射诱导的硒代蛋氨酸(SeMet)侧链无序化是蛋白质结构解析的一个重大障碍。这些位点的B因子增加不仅会导致相位解析能力严重下降,而且在同一晶胞中,一些位点的衰变速度比其他位点快得多。这些对辐射敏感的SeMet侧链随剂量的衰变速度比高阶衍射斑点快,因此很难通过检查衍射图样来检测这种损伤。发现施加10 - 100 MGy的X射线剂量后,含SeMet样品的硒X射线吸收近边光谱(XANES)发生了显著变化。最显著的是,标准Se边附近的尖锐“白线”特征消失了。这种变化归因于SeMet中Cγ - Se键的断裂。这种光谱变化被用作探针来测量低温冷却样品中SeMet随X射线剂量的衰变率。研究了两种蛋白质晶体类型和15种含有游离SeMet氨基酸的溶液。损伤率受样品的化学和物理条件影响,硒XANES信号的半衰期剂量范围为5至43 MGy。这些衰变率比Se原子直接与X射线光子相互作用的速率高34至3.8倍,因此损伤机制必定是一种次级效应。冷却至更结晶状态的样品通常比冷却至非晶态固体的样品衰变更快。唯一的例外是一种蛋白质晶体,其中纳米晶冷冻保护剂具有保护作用。降低pH值,尤其是用抗坏血酸或硝酸,具有保护作用,并且SeMet寿命随样品温度降低(低至93 K)而单调增加。一种蛋白质晶体中SeMet的寿命与游离氨基酸的寿命相同,而测量到的最长SeMet寿命出现在另一种蛋白质晶体类型中。发现这种保护源于蛋白质分子的折叠结构。提出了一种机制来解释观察到的衰变率,该机制涉及沿着蛋白质分子周围电场线的损伤物种。

相似文献

1
XANES measurements of the rate of radiation damage to selenomethionine side chains.
J Synchrotron Radiat. 2007 Jan;14(Pt 1):51-72. doi: 10.1107/S0909049506048898. Epub 2006 Dec 15.
2
The many faces of radiation-induced changes.
J Synchrotron Radiat. 2007 Jan;14(Pt 1):24-33. doi: 10.1107/S0909049506046589. Epub 2006 Dec 15.
3
Modelling and refining site-specific radiation damage in SAD/MAD phasing.
J Synchrotron Radiat. 2007 Jan;14(Pt 1):34-42. doi: 10.1107/S0909049506038970. Epub 2006 Dec 15.
4
A comparison of SAD and two-wavelength MAD phasing for radiation-damaged Se-MET crystals.
J Synchrotron Radiat. 2007 Jan;14(Pt 1):43-50. doi: 10.1107/S0909049506041045. Epub 2006 Dec 15.
5
Single isomorphous replacement phasing of selenomethionine-containing proteins using UV-induced radiation damage.
Acta Crystallogr D Biol Crystallogr. 2011 Jan;67(Pt 1):32-44. doi: 10.1107/S090744491004299X. Epub 2010 Dec 16.
7
Production and characterization of fully selenomethionine-labeled Saccharomyces cerevisiae.
J Agric Food Chem. 2008 Dec 24;56(24):11792-9. doi: 10.1021/jf8018479.
8
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.
9
Data of radiation damage on selenomethionine-substituted single-domain substrate-binding protein.
Data Brief. 2024 Jan 30;53:110114. doi: 10.1016/j.dib.2024.110114. eCollection 2024 Apr.

引用本文的文献

1
Specific radiation damage to halogenated inhibitors and ligands in protein-ligand crystal structures.
J Appl Crystallogr. 2024 Nov 26;57(Pt 6):1951-1965. doi: 10.1107/S1600576724010549. eCollection 2024 Dec 1.
2
Utilizing anomalous signals for element identification in macromolecular crystallography.
Acta Crystallogr D Struct Biol. 2024 Oct 1;80(Pt 10):713-721. doi: 10.1107/S2059798324008659. Epub 2024 Sep 18.
3
Identifying and avoiding radiation damage in macromolecular crystallography.
Acta Crystallogr D Struct Biol. 2024 May 1;80(Pt 5):314-327. doi: 10.1107/S2059798324003243. Epub 2024 Apr 30.
5
Radiation damage to biological samples: still a pertinent issue.
J Synchrotron Radiat. 2021 Sep 1;28(Pt 5):1278-1283. doi: 10.1107/S1600577521008845.
6
Crystal structures of the selenoprotein glutathione peroxidase 4 in its apo form and in complex with the covalently bound inhibitor ML162.
Acta Crystallogr D Struct Biol. 2021 Feb 1;77(Pt 2):237-248. doi: 10.1107/S2059798320016125. Epub 2021 Jan 26.
7
Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4142-4151. doi: 10.1073/pnas.1821522117. Epub 2020 Feb 11.
8
Improving the quality of XAFS data.
J Synchrotron Radiat. 2018 Jul 1;25(Pt 4):972-980. doi: 10.1107/S1600577518006021. Epub 2018 May 29.
9
The cytotoxic PSMα3 reveals a cross-α amyloid-like fibril.
Science. 2017 Feb 24;355(6327):831-833. doi: 10.1126/science.aaf4901.
10
RNA protects a nucleoprotein complex against radiation damage.
Acta Crystallogr D Struct Biol. 2016 May;72(Pt 5):648-57. doi: 10.1107/S2059798316003351. Epub 2016 Apr 26.

本文引用的文献

1
Quantitative Speciation of Selenium in Soils Using X-ray Absorption Spectroscopy.
Environ Sci Technol. 1995 Sep 1;29(9):2456-9. doi: 10.1021/es00009a043.
2
Specific radiation damage to acidic residues and its relation to their chemical and structural environment.
J Synchrotron Radiat. 2007 Jan;14(Pt 1):84-91. doi: 10.1107/S0909049506038623. Epub 2006 Dec 15.
3
Is radiation damage dependent on the dose rate used during macromolecular crystallography data collection?
Acta Crystallogr D Biol Crystallogr. 2006 Feb;62(Pt 2):125-32. doi: 10.1107/S0907444905033627. Epub 2006 Jan 18.
4
Improving radiation-damage substructures for RIP.
Acta Crystallogr D Biol Crystallogr. 2005 Sep;61(Pt 9):1227-37. doi: 10.1107/S0907444905019360. Epub 2005 Aug 16.
6
X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography.
Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12047-52. doi: 10.1073/pnas.0505207102. Epub 2005 Aug 15.
7
Strain relief at the active site of phosphoserine aminotransferase induced by radiation damage.
Protein Sci. 2005 Jun;14(6):1498-507. doi: 10.1110/ps.051397905. Epub 2005 May 9.
8
Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate.
Appl Environ Microbiol. 2005 May;71(5):2331-7. doi: 10.1128/AEM.71.5.2331-2337.2005.
10
Will reduced radiation damage occur with very small crystals?
J Synchrotron Radiat. 2005 May;12(Pt 3):299-303. doi: 10.1107/S0909049505003274. Epub 2005 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验