Suppr超能文献

核糖核酸保护核蛋白复合体免受辐射损伤。

RNA protects a nucleoprotein complex against radiation damage.

作者信息

Bury Charles S, McGeehan John E, Antson Alfred A, Carmichael Ian, Gerstel Markus, Shevtsov Mikhail B, Garman Elspeth F

机构信息

Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England.

Molecular Biophysics, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, King Henry I Street, Portsmouth PO1 2DY, England.

出版信息

Acta Crystallogr D Struct Biol. 2016 May;72(Pt 5):648-57. doi: 10.1107/S2059798316003351. Epub 2016 Apr 26.

Abstract

Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. Here, a methodology has been developed whereby per-atom density changes could be quantified with increasing dose over a wide (1.3-25.0 MGy) range and at higher resolution (1.98 Å) than the previous systematic specific damage study on a protein-DNA complex. Specific damage manifestations were determined within the large trp RNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. Additionally, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density.

摘要

在大分子X射线晶体学数据收集过程中的辐射损伤仍然是许多大分子结构测定的主要障碍。即使最终通过晶体学流程得到了一个模型,晶体大分子内辐射诱导的结构和构象变化(即所谓的特异性损伤)的表现也可能导致对生物学机制的错误解读。尽管这在蛋白质晶体中已得到充分表征,但对于更大类别的核蛋白复合物中的特异性损伤效应却知之甚少。在此,已开发出一种方法,通过该方法可以在较宽的剂量范围(1.3 - 25.0 MGy)内,以比先前对蛋白质 - DNA复合物进行的系统性特异性损伤研究更高的分辨率(1.98 Å),对每个原子的密度变化随剂量增加进行量化。在与单链RNA结合形成围绕蛋白质的带状结构的大色氨酸RNA结合衰减蛋白(TRAP)中确定了特异性损伤表现。在较大的剂量范围内,发现RNA比蛋白质对辐射诱导的化学变化的敏感性要低得多。不对称单元中有两个TRAP分子,其中只有一个含有结合的RNA,这使得能够对RNA结合在蛋白质特异性损伤敏感性中的确切作用进行可控研究。每个TRAP环内的11重对称性允许对Glu和Asp损伤模式进行具有统计学意义的分析,结果意外地发现RNA结合可保护分布在蛋白质分子外部的11个RNA结合口袋内原本高度敏感的残基。此外,该方法能够直接从电子密度定量RNA结合后辐射诱导的Lys和Phe无序化的减少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5207/4854314/8f6d18753872/d-72-00648-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验