Allan D, Low M G, Finean J B, Michell R H
Biochim Biophys Acta. 1975 Dec 1;413(2):309-16. doi: 10.1016/0005-2736(75)90116-9.
When intact human erythrocytes were treated with phospholipase C (Clostridium perfringens), up to 30% of the membrane phospholipids were broken down without significant cell lysis. Only phosphatidylcholine and sphingomyelin were attacked. Ceramide (derived from sphingomyelin) accumulated, but 1,2-diacylglycerol (derived from phosphatidylcholine) was largely converted into phosphatidate. Up to 12% of the cell phospholipid could be converted into phosphatidate in this way. Pig erythrocytes and lymphocytes showed a similar but smaller synthesis of phosphatidate after phospholipase C attack. Phospholipase C also caused a marked morphological change in erythrocytes, giving rise to spherical cells containing internal membrane vesicles. This change appeared to be due to ceramide and de and diacylglycerol accumulation rather than to increased phosphatidate content of the cells.