Suppr超能文献

质量涨落动力学:通过耦合均值-方差计算捕捉化学反应系统中的随机效应。

Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations.

作者信息

Gómez-Uribe Carlos A, Verghese George C

机构信息

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

J Chem Phys. 2007 Jan 14;126(2):024109. doi: 10.1063/1.2408422.

Abstract

The intrinsic stochastic effects in chemical reactions, and particularly in biochemical networks, may result in behaviors significantly different from those predicted by deterministic mass action kinetics (MAK). Analyzing stochastic effects, however, is often computationally taxing and complex. The authors describe here the derivation and application of what they term the mass fluctuation kinetics (MFK), a set of deterministic equations to track the means, variances, and covariances of the concentrations of the chemical species in the system. These equations are obtained by approximating the dynamics of the first and second moments of the chemical master equation. Apart from needing knowledge of the system volume, the MFK description requires only the same information used to specify the MAK model, and is not significantly harder to write down or apply. When the effects of fluctuations are negligible, the MFK description typically reduces to MAK. The MFK equations are capable of describing the average behavior of the network substantially better than MAK, because they incorporate the effects of fluctuations on the evolution of the means. They also account for the effects of the means on the evolution of the variances and covariances, to produce quite accurate uncertainty bands around the average behavior. The MFK computations, although approximate, are significantly faster than Monte Carlo methods for computing first and second moments in systems of chemical reactions. They may therefore be used, perhaps along with a few Monte Carlo simulations of sample state trajectories, to efficiently provide a detailed picture of the behavior of a chemical system.

摘要

化学反应中的内在随机效应,尤其是在生化网络中,可能导致行为与确定性质量作用动力学(MAK)预测的行为显著不同。然而,分析随机效应通常在计算上既费力又复杂。作者在此描述了他们所称的质量涨落动力学(MFK)的推导和应用,这是一组确定性方程,用于跟踪系统中化学物质浓度的均值、方差和协方差。这些方程是通过对化学主方程的一阶和二阶矩的动力学进行近似得到的。除了需要知道系统体积外,MFK描述只需要用于指定MAK模型的相同信息,并且写下来或应用起来并没有显著更难。当涨落的影响可以忽略不计时,MFK描述通常简化为MAK。MFK方程能够比MAK更好地描述网络的平均行为,因为它们纳入了涨落对均值演化的影响。它们还考虑了均值对方差和协方差演化的影响,以在平均行为周围产生相当准确的不确定带。MFK计算虽然是近似的,但比用于计算化学反应系统中一阶和二阶矩的蒙特卡罗方法要快得多。因此,它们也许可以与一些样本状态轨迹的蒙特卡罗模拟一起使用,以有效地提供化学系统行为的详细图景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验