Suppr超能文献

来自线粒体II型脂肪酸合酶的人β-酮酰基[酰基载体蛋白]合酶的结构

Structure of the human beta-ketoacyl [ACP] synthase from the mitochondrial type II fatty acid synthase.

作者信息

Christensen Caspar Elo, Kragelund Birthe B, von Wettstein-Knowles Penny, Henriksen Anette

机构信息

Department of Molecular Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.

出版信息

Protein Sci. 2007 Feb;16(2):261-72. doi: 10.1110/ps.062473707.

Abstract

Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic triad. Three KASes with different substrate specificities participate in synthesis of the C(16) and C(18) products of prokaryotic FAS. By comparison, mtKAS carries out all elongation reactions in the mitochondria. We present the X-ray crystal structures of the Cys-His-His-containing human mtKAS and its hexanoyl complex plus the hexanoyl complex of the plant mtKAS from Arabidopsis thaliana. The structures explain (1) the bimodal (C(6) and C(10)-C(12)) substrate preferences leading to the C(8) lipoic acid precursor and long chains for the membranes, respectively, and (2) the low cerulenin sensitivity of the human enzyme; and (3) reveal two different potential acyl-binding-pocket extensions. Rearrangements taking place in the active site, including subtle changes in the water network, indicate a change in cooperativity of the active-site histidines upon primer binding.

摘要

脂肪酸生物合成存在两种不同的组织方式

哺乳动物、真菌和低等真核生物的多功能I型脂肪酸合酶(FAS),其活性存在于一条或两条多肽上;以及原核生物、质体和线粒体中解离的II型FAS,其各自的活性由离散基因编码。线粒体FAS(mtKAS)的β-酮酰基[ACP]合酶(KAS)部分可被抗生素浅蓝菌素靶向,也可能被其他抑制原核KAS的抗生素靶向:硫内酯霉素、平板霉素和α-亚甲基丁内酯C75。线粒体和原核KAS之间高度的结构相似性使得开发靶向原核KAS而不影响细胞质FAS的KAS结构域的新型抗生素变得复杂。KAS利用半胱氨酸-组氨酸-组氨酸或半胱氨酸-组氨酸-天冬酰胺催化三联体催化C(2)脂肪酸延伸反应。三种具有不同底物特异性的KAS参与原核FAS的C(16)和C(18)产物的合成。相比之下,mtKAS在线粒体中进行所有延伸反应。我们展示了含半胱氨酸-组氨酸-组氨酸的人mtKAS及其己酰复合物的X射线晶体结构,以及来自拟南芥的植物mtKAS的己酰复合物。这些结构解释了:(1)导致分别产生C(8)硫辛酸前体和用于膜的长链的双峰(C(6)和C(10)-C(12))底物偏好;(2)人酶对浅蓝菌素的低敏感性;以及(3)揭示了两种不同的潜在酰基结合口袋延伸。活性位点发生的重排,包括水网络的细微变化,表明引物结合后活性位点组氨酸的协同性发生了变化。

相似文献

4
X-ray crystal structure of Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase II (mtKasB).
J Mol Biol. 2007 Feb 16;366(2):469-80. doi: 10.1016/j.jmb.2006.11.006. Epub 2006 Nov 7.
8
Inhibition of beta-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin. Structure and mechanism.
J Biol Chem. 2001 Mar 2;276(9):6551-9. doi: 10.1074/jbc.M007101200. Epub 2000 Oct 24.

引用本文的文献

1
Assessing and harnessing updated polyketide synthase modules through combinatorial engineering.
Nat Commun. 2024 Aug 1;15(1):6485. doi: 10.1038/s41467-024-50844-6.
2
Modular polyketide synthase ketosynthases collaborate with upstream dehydratases to install double bonds.
Chem Commun (Camb). 2024 Aug 13;60(66):8712-8715. doi: 10.1039/d4cc03034f.
3
Substrate Sequestration and Chain Flipping in Human Mitochondrial Acyl Carrier Protein.
Biochemistry. 2023 Dec 19;62(24):3548-3553. doi: 10.1021/acs.biochem.3c00447. Epub 2023 Dec 1.
4
Enzymology of standalone elongating ketosynthases.
Chem Sci. 2022 Mar 9;13(15):4225-4238. doi: 10.1039/d1sc07256k. eCollection 2022 Apr 13.
5
How -Acyltransferase Assembly-Line Ketosynthases Gatekeep for Processed Polyketide Intermediates.
ACS Chem Biol. 2021 Nov 19;16(11):2515-2526. doi: 10.1021/acschembio.1c00598. Epub 2021 Sep 30.
6
Novel Targets for Antimicrobials.
Turk J Pharm Sci. 2020 Oct;17(5):565-575. doi: 10.4274/tjps.galenos.2020.90197. Epub 2020 Oct 30.
7
Engineering fungal de novo fatty acid synthesis for short chain fatty acid production.
Nat Commun. 2017 Mar 10;8:14650. doi: 10.1038/ncomms14650.
8
Engineering fatty acid synthases for directed polyketide production.
Nat Chem Biol. 2017 Apr;13(4):363-365. doi: 10.1038/nchembio.2314. Epub 2017 Feb 20.
9
Analyses of cobalt-ligand and potassium-ligand bond lengths in metalloproteins: trends and patterns.
J Mol Model. 2014 Jun;20(6):2271. doi: 10.1007/s00894-014-2271-z. Epub 2014 May 22.

本文引用的文献

1
Platensimycin is a selective FabF inhibitor with potent antibiotic properties.
Nature. 2006 May 18;441(7091):358-61. doi: 10.1038/nature04784.
2
Small revisions to predicted distances around metal sites in proteins.
Acta Crystallogr D Biol Crystallogr. 2006 Jun;62(Pt 6):678-82. doi: 10.1107/S0907444906014594. Epub 2006 May 12.
3
Inhibiting bacterial fatty acid synthesis.
J Biol Chem. 2006 Jun 30;281(26):17541-4. doi: 10.1074/jbc.R600004200. Epub 2006 Apr 28.
5
The crystallography beamline I711 at MAX II.
J Synchrotron Radiat. 2000 Jul 1;7(Pt 4):203-8. doi: 10.1107/S0909049500005331.
6
Optimal description of a protein structure in terms of multiple groups undergoing TLS motion.
Acta Crystallogr D Biol Crystallogr. 2006 Apr;62(Pt 4):439-50. doi: 10.1107/S0907444906005270. Epub 2006 Mar 18.
9
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验