Christensen Caspar Elo, Kragelund Birthe B, von Wettstein-Knowles Penny, Henriksen Anette
Department of Molecular Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.
Protein Sci. 2007 Feb;16(2):261-72. doi: 10.1110/ps.062473707.
Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic triad. Three KASes with different substrate specificities participate in synthesis of the C(16) and C(18) products of prokaryotic FAS. By comparison, mtKAS carries out all elongation reactions in the mitochondria. We present the X-ray crystal structures of the Cys-His-His-containing human mtKAS and its hexanoyl complex plus the hexanoyl complex of the plant mtKAS from Arabidopsis thaliana. The structures explain (1) the bimodal (C(6) and C(10)-C(12)) substrate preferences leading to the C(8) lipoic acid precursor and long chains for the membranes, respectively, and (2) the low cerulenin sensitivity of the human enzyme; and (3) reveal two different potential acyl-binding-pocket extensions. Rearrangements taking place in the active site, including subtle changes in the water network, indicate a change in cooperativity of the active-site histidines upon primer binding.
哺乳动物、真菌和低等真核生物的多功能I型脂肪酸合酶(FAS),其活性存在于一条或两条多肽上;以及原核生物、质体和线粒体中解离的II型FAS,其各自的活性由离散基因编码。线粒体FAS(mtKAS)的β-酮酰基[ACP]合酶(KAS)部分可被抗生素浅蓝菌素靶向,也可能被其他抑制原核KAS的抗生素靶向:硫内酯霉素、平板霉素和α-亚甲基丁内酯C75。线粒体和原核KAS之间高度的结构相似性使得开发靶向原核KAS而不影响细胞质FAS的KAS结构域的新型抗生素变得复杂。KAS利用半胱氨酸-组氨酸-组氨酸或半胱氨酸-组氨酸-天冬酰胺催化三联体催化C(2)脂肪酸延伸反应。三种具有不同底物特异性的KAS参与原核FAS的C(16)和C(18)产物的合成。相比之下,mtKAS在线粒体中进行所有延伸反应。我们展示了含半胱氨酸-组氨酸-组氨酸的人mtKAS及其己酰复合物的X射线晶体结构,以及来自拟南芥的植物mtKAS的己酰复合物。这些结构解释了:(1)导致分别产生C(8)硫辛酸前体和用于膜的长链的双峰(C(6)和C(10)-C(12))底物偏好;(2)人酶对浅蓝菌素的低敏感性;以及(3)揭示了两种不同的潜在酰基结合口袋延伸。活性位点发生的重排,包括水网络的细微变化,表明引物结合后活性位点组氨酸的协同性发生了变化。