Suppr超能文献

酰基转移酶装配线酮合酶为已加工聚酮中间产物把守住关卡。

How -Acyltransferase Assembly-Line Ketosynthases Gatekeep for Processed Polyketide Intermediates.

出版信息

ACS Chem Biol. 2021 Nov 19;16(11):2515-2526. doi: 10.1021/acschembio.1c00598. Epub 2021 Sep 30.

Abstract

With the redefinition of polyketide synthase (PKS) modules, a new appreciation of their most downstream domain, the ketosynthase (KS), is emerging. In addition to performing its well-established role of generating a carbon-carbon bond between an acyl-CoA building block and a growing polyketide, it may gatekeep against incompletely processed intermediates. Here, we investigate 739 KSs from 92 primarily actinomycete, -acyltransferase assembly lines. When KSs were separated into 16 families based on the chemistries at the α- and β-carbons of their polyketide substrates, a comparison of 32 substrate tunnel residues revealed unique sequence fingerprints. Surprisingly, additional fingerprints were detected when the chemistry at the γ-carbon was considered. Representative KSs were modeled bound to their natural polyketide substrates to better understand observed patterns, such as the substitution of a tryptophan by a smaller residue to accommodate an l-α-methyl group or the substitution of four smaller residues by larger ones to make better contact with a primer unit or diketide. Mutagenesis of a conserved glutamine in a KS within a model triketide synthase indicates that the substrate tunnel is sensitive to alteration and that engineering this KS to accept unnatural substrates may require several mutations.

摘要

随着聚酮合酶 (PKS) 模块的重新定义,人们对其最下游结构域——酮合酶 (KS) 的认识也在不断加深。除了在酰基辅酶 A 构建块和生长聚酮之间生成碳-碳键,发挥其既定作用外,它还可能阻止未完全加工的中间体的形成。在这里,我们研究了来自 92 种主要放线菌 -酰基转移酶装配线的 739 个 KS。当 KS 根据其聚酮底物的α-和β-碳原子上的化学性质分为 16 个家族时,对 32 个底物隧道残基的比较揭示了独特的序列指纹。令人惊讶的是,当考虑到γ-碳原子上的化学性质时,还检测到了其他指纹。代表性的 KS 与它们的天然聚酮底物结合进行建模,以更好地理解观察到的模式,例如用较小的残基取代色氨酸以容纳 l-α-甲基基团,或者用较大的残基取代四个较小的残基以更好地与引物单元或二酮单元接触。在模型三酮合酶中,对 KS 内一个保守谷氨酰胺的突变表明,底物隧道对改变很敏感,并且要使该 KS 能够接受非天然底物,可能需要进行多次突变。

相似文献

1
How -Acyltransferase Assembly-Line Ketosynthases Gatekeep for Processed Polyketide Intermediates.
ACS Chem Biol. 2021 Nov 19;16(11):2515-2526. doi: 10.1021/acschembio.1c00598. Epub 2021 Sep 30.
2
Priming enzymes from the pikromycin synthase reveal how assembly-line ketosynthases catalyze carbon-carbon chemistry.
Structure. 2022 Sep 1;30(9):1331-1339.e3. doi: 10.1016/j.str.2022.05.021. Epub 2022 Jun 22.
6
7
Gatekeeping Ketosynthases Dictate Initiation of Assembly Line Biosynthesis of Pyrrolic Polyketides.
J Am Chem Soc. 2021 May 26;143(20):7617-7622. doi: 10.1021/jacs.1c02371. Epub 2021 May 14.
8
The modules of trans-acyltransferase assembly lines redefined with a central acyl carrier protein.
Proteins. 2018 Jun;86(6):664-675. doi: 10.1002/prot.25493. Epub 2018 Mar 25.
9
Acyl-chain elongation drives ketosynthase substrate selectivity in trans-acyltransferase polyketide synthases.
Angew Chem Int Ed Engl. 2015 Feb 2;54(6):1817-21. doi: 10.1002/anie.201410219. Epub 2014 Dec 21.
10
Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases.
Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12693-8. doi: 10.1073/pnas.1515460112. Epub 2015 Sep 29.

引用本文的文献

1
Gene conversion-associated successive engineering of modular polyketide synthases.
Commun Chem. 2025 Aug 27;8(1):261. doi: 10.1038/s42004-025-01671-3.
2
Visualizing acyl carrier protein interactions within a crosslinked type I polyketide synthase.
Nat Commun. 2025 Aug 21;16(1):7798. doi: 10.1038/s41467-025-63024-x.
3
Non-canonical thioesterases in bacterial non-ribosomal peptide biosynthesis.
J Antibiot (Tokyo). 2025 Aug 6. doi: 10.1038/s41429-025-00854-3.
4
7
Refactoring the pikromycin synthase for the modular biosynthesis of macrolide antibiotics in E. coli.
Res Sq. 2025 Jan 8:rs.3.rs-5640596. doi: 10.21203/rs.3.rs-5640596/v1.
8
Gatekeeping Activity of Collinear Ketosynthase Domains Limits Product Diversity for Engineered Type I Polyketide Synthases.
Biochemistry. 2024 Sep 17;63(18):2240-2244. doi: 10.1021/acs.biochem.4c00249. Epub 2024 Aug 26.
9
Assessing and harnessing updated polyketide synthase modules through combinatorial engineering.
Nat Commun. 2024 Aug 1;15(1):6485. doi: 10.1038/s41467-024-50844-6.

本文引用的文献

1
Preparative production of an enantiomeric pair by engineered polyketide synthases.
Chem Commun (Camb). 2021 Sep 11;57(70):8762-8765. doi: 10.1039/d1cc03073f. Epub 2021 Aug 11.
2
Gatekeeping Ketosynthases Dictate Initiation of Assembly Line Biosynthesis of Pyrrolic Polyketides.
J Am Chem Soc. 2021 May 26;143(20):7617-7622. doi: 10.1021/jacs.1c02371. Epub 2021 May 14.
3
Insights into modular polyketide synthase loops aided by repetitive sequences.
Proteins. 2021 Sep;89(9):1099-1110. doi: 10.1002/prot.26083. Epub 2021 Apr 28.
4
Ketosynthase Domain Constrains the Design of Polyketide Synthases.
ACS Chem Biol. 2020 Sep 18;15(9):2422-2432. doi: 10.1021/acschembio.0c00405. Epub 2020 Aug 26.
5
Structural snapshots of the minimal PKS system responsible for octaketide biosynthesis.
Nat Chem. 2020 Aug;12(8):755-763. doi: 10.1038/s41557-020-0491-7. Epub 2020 Jul 6.
6
An in vitro platform for engineering and harnessing modular polyketide synthases.
Nat Commun. 2020 Jan 3;11(1):80. doi: 10.1038/s41467-019-13811-0.
7
Type I fatty acid synthase trapped in the octanoyl-bound state.
Protein Sci. 2020 Feb;29(2):589-605. doi: 10.1002/pro.3797.
9
Identification of crucial bottlenecks in engineered polyketide biosynthesis.
Org Biomol Chem. 2019 Jul 14;17(26):6374-6385. doi: 10.1039/c9ob00831d. Epub 2019 May 15.
10
pH-Rate profiles establish that polyketide synthase dehydratase domains utilize a single-base mechanism.
Org Biomol Chem. 2018 Dec 5;16(47):9165-9170. doi: 10.1039/c8ob02637h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验