Suppr超能文献

通过质谱法实现深度蛋白质组学分析。

Achieving in-depth proteomics profiling by mass spectrometry.

作者信息

Ahn Natalie G, Shabb John B, Old William M, Resing Katheryn A

机构信息

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.

出版信息

ACS Chem Biol. 2007 Jan 23;2(1):39-52. doi: 10.1021/cb600357d.

Abstract

Proteomics addresses the important goal of determining the chemistry and composition of proteins in biological samples. Mass-spectrometry-based strategies have been highly successful in identifying and profiling proteins in complex mixtures; however, although depth of sampling continues to improve, a general recognition exists that no study has yet achieved complete protein coverage in any tissue, cell type, subcellular component, or fluid. The development of new approaches for comprehensively surveying highly complex protein mixtures, distinguishing protein isoforms, quantifying changes in protein abundance between different samples, and mapping post-translational modifications are areas of active research. These will be needed to achieve the "systems-wide" protein profiling goals of defining molecular responses to cell perturbations and obtaining biomarker information for disease detection, prognosis, and responses to therapy. We review recent progress in approaching these problems and present examples of successful applications and the outlook for the future.

摘要

蛋白质组学致力于实现确定生物样品中蛋白质的化学性质和组成这一重要目标。基于质谱的策略在识别和分析复杂混合物中的蛋白质方面取得了巨大成功;然而,尽管采样深度不断提高,但人们普遍认识到,尚无任何研究能够在任何组织、细胞类型、亚细胞成分或体液中实现对蛋白质的完全覆盖。开发用于全面检测高度复杂蛋白质混合物、区分蛋白质异构体、量化不同样品间蛋白质丰度变化以及绘制翻译后修饰图谱的新方法,是当前活跃的研究领域。要实现“全系统”蛋白质分析的目标,即定义细胞扰动的分子反应并获取用于疾病检测、预后和治疗反应的生物标志物信息,这些新方法是必不可少的。我们回顾了在解决这些问题方面的最新进展,并给出了成功应用的实例以及对未来的展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验