Suppr超能文献

酿酒酵母肌醇突变体:INO1 基因座的定位及INO1、INO2 和 INO4 基因座等位基因的特征分析。

Inositol Mutants of SACCHAROMYCES CEREVISIAE: Mapping the ino1 Locus and Characterizing Alleles of the ino1, ino2 and ino4 Loci.

机构信息

Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York.

出版信息

Genetics. 1981 Jul;98(3):491-503. doi: 10.1093/genetics/98.3.491.

Abstract

An extensive genetic analysis of inositol auxotrophic mutants of yeast is reported. The analysis includes newly isolated mutants, as well as those previously reported (Culbertson and Henry 1975). Approximately 70% of all inositol auxotrophs isolated are shown to be alleles of the ino1 locus, the structural gene for inositol-1-phosphate synthase, the major enzyme involved in inositol biosynthesis. Alleles of two other loci, ino2 and ino4, comprise 9% of total mutants, with the remainder representing unique loci or complementation groups. The ino1 locus was mapped by trisomic analysis with an n + 1 disomic strain constructed with complementing alleles at this locus. The ino1 locus is shown to be located between ura2 (11.1 cm) and cdc6 (21.8 cm) on chromosome X. An extended map of chromosome X of yeast is presented. Unlike most yeast loci, but similar to the his1 locus, the ino1 locus lacks allelic representatives that are suppressible by known suppressors. This finding suggests that premature termination of translation of the ino1 gene product may be incompatible with cell viability.

摘要

报道了对酵母肌醇营养缺陷型突变体的广泛遗传分析。该分析包括新分离的突变体,以及以前报道的那些(Culbertson 和 Henry 1975)。大约 70%分离到的所有肌醇营养缺陷型都是肌醇-1-磷酸合酶结构基因 ino1 位点的等位基因,该酶是参与肌醇生物合成的主要酶。另外两个位点 ino2 和 ino4 的等位基因占总突变体的 9%,其余代表独特的基因座或互补群。通过用在该位点互补的 n + 1 二倍体构建的 n + 1 三体分析对 ino1 基因座进行了作图。ino1 基因座位于酵母染色体 X 上的 ura2(11.1cm)和 cdc6(21.8cm)之间。本文呈现了酵母染色体 X 的扩展图谱。与大多数酵母基因座不同,但与 his1 基因座相似,ino1 基因座缺乏已知抑制剂可抑制的等位基因代表。这一发现表明,ino1 基因产物翻译的过早终止可能与细胞活力不相容。

相似文献

3
The INO2 and INO4 loci of Saccharomyces cerevisiae are pleiotropic regulatory genes.
Mol Cell Biol. 1984 Nov;4(11):2479-85. doi: 10.1128/mcb.4.11.2479-2485.1984.
5
Isolation of the yeast INO1 gene: located on an autonomously replicating plasmid, the gene is fully regulated.
Proc Natl Acad Sci U S A. 1984 Jun;81(12):3816-20. doi: 10.1073/pnas.81.12.3816.
8
Inositol-requiring mutants of Saccharomyces cerevisiae.
Genetics. 1975 May;80(1):23-40. doi: 10.1093/genetics/80.1.23.

引用本文的文献

1
Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0053523. doi: 10.1128/aem.00535-23. Epub 2023 May 22.
2
Mechanism of Long-Range Chromosome Motion Triggered by Gene Activation.
Dev Cell. 2020 Feb 10;52(3):309-320.e5. doi: 10.1016/j.devcel.2019.12.007. Epub 2020 Jan 2.
3
Identification of an inositol-3-phosphate synthase 1-B gene (AccIPS1-B) from Apis cerana cerana and its role in abiotic stress.
Cell Stress Chaperones. 2019 Nov;24(6):1101-1113. doi: 10.1007/s12192-019-01032-9. Epub 2019 Sep 12.
4
The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast.
Chem Phys Lipids. 2014 May;180:23-43. doi: 10.1016/j.chemphyslip.2013.12.013. Epub 2014 Jan 10.
5
Brain inositol is a novel stimulator for promoting Cryptococcus penetration of the blood-brain barrier.
PLoS Pathog. 2013;9(4):e1003247. doi: 10.1371/journal.ppat.1003247. Epub 2013 Apr 4.
6
Two major inositol transporters and their role in cryptococcal virulence.
Eukaryot Cell. 2011 May;10(5):618-28. doi: 10.1128/EC.00327-10. Epub 2011 Mar 11.
7
Genome-wide screen for inositol auxotrophy in Saccharomyces cerevisiae implicates lipid metabolism in stress response signaling.
Mol Genet Genomics. 2011 Feb;285(2):125-49. doi: 10.1007/s00438-010-0592-x. Epub 2010 Dec 7.
9
Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase.
J Biol Chem. 2008 Jul 18;283(29):20443-53. doi: 10.1074/jbc.M802866200. Epub 2008 May 5.
10
The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme.
J Biol Chem. 2006 Apr 7;281(14):9210-8. doi: 10.1074/jbc.M600425200. Epub 2006 Feb 8.

本文引用的文献

2
Biochemical Mutants in the Smut Fungus Ustilago Maydis.
Genetics. 1949 Sep;34(5):607-26. doi: 10.1093/genetics/34.5.607.
3
GENE-ENZYME RELATIONS IN HISTIDINE BIOSYNTHESIS IN YEAST.
Science. 1964 Oct 23;146(3643):525-7. doi: 10.1126/science.146.3643.525.
4
Genetic mapping of nonsense suppressors in yeast.
Genetics. 1968 Dec;60(4):735-42. doi: 10.1093/genetics/60.4.735.
5
A stable aneuploid of Saccharomyces cerevisiae.
Genetics. 1971 Apr;67(4):483-95. doi: 10.1093/genetics/67.4.483.
6
Novel interallelic complementation at the his1 locus of yeast.
Genetics. 1978 Nov;90(3):501-16. doi: 10.1093/genetics/90.3.501.
7
Reversion at the HiS1 locus of yeast.
Genetics. 1978 Nov;90(3):489-500. doi: 10.1093/genetics/90.3.489.
8
Leucine insertion caused by a yeast amber suppressor.
J Mol Biol. 1977 Jan 5;109(1):13-22. doi: 10.1016/s0022-2836(77)80043-0.
9
Mapping and gene conversion studies with the structural gene for iso-1-cytochrome C in yeast.
Genetics. 1975 Dec;81(4):615-29. doi: 10.1093/genetics/81.4.615.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验