Suppr超能文献

基于支持向量机的半胱天冬酶底物切割位点预测

SVM-based prediction of caspase substrate cleavage sites.

作者信息

Wee Lawrence J K, Tan Tin Wee, Ranganathan Shoba

机构信息

Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

出版信息

BMC Bioinformatics. 2006 Dec 18;7 Suppl 5(Suppl 5):S14. doi: 10.1186/1471-2105-7-S5-S14.

Abstract

BACKGROUND

Caspases belong to a class of cysteine proteases which function as critical effectors in apoptosis and inflammation by cleaving substrates immediately after unique sites. Prediction of such cleavage sites will complement structural and functional studies on substrates cleavage as well as discovery of new substrates. Recently, different computational methods have been developed to predict the cleavage sites of caspase substrates with varying degrees of success. As the support vector machines (SVM) algorithm has been shown to be useful in several biological classification problems, we have implemented an SVM-based method to investigate its applicability to this domain.

RESULTS

A set of unique caspase substrates cleavage sites were obtained from literature and used for evaluating the SVM method. Datasets containing (i) the tetrapeptide cleavage sites, (ii) the tetrapeptide cleavage sites, augmented by two adjacent residues, P1' and P2' amino acids and (iii) the tetrapeptide cleavage sites with ten additional upstream and downstream flanking sequences (where available) were tested. The SVM method achieved an accuracy ranging from 81.25% to 97.92% on independent test sets. The SVM method successfully predicted the cleavage of a novel caspase substrate and its mutants.

CONCLUSION

This study presents an SVM approach for predicting caspase substrate cleavage sites based on the cleavage sites and the downstream and upstream flanking sequences. The method shows an improvement over existing methods and may be useful for predicting hitherto undiscovered cleavage sites.

摘要

背景

半胱天冬酶属于一类半胱氨酸蛋白酶,通过在特定位点之后立即切割底物,在细胞凋亡和炎症中发挥关键效应作用。预测此类切割位点将补充底物切割的结构和功能研究,以及新底物的发现。最近,已经开发了不同的计算方法来预测半胱天冬酶底物的切割位点,取得了不同程度的成功。由于支持向量机(SVM)算法已被证明在几个生物分类问题中有用,我们实施了一种基于SVM的方法来研究其在该领域的适用性。

结果

从文献中获得了一组独特的半胱天冬酶底物切割位点,并用于评估SVM方法。测试了包含(i)四肽切割位点、(ii)由两个相邻残基P1'和P2'氨基酸增强的四肽切割位点以及(iii)具有十个额外上游和下游侧翼序列(如可用)的四肽切割位点的数据集。SVM方法在独立测试集上的准确率范围为81.25%至97.92%。SVM方法成功预测了一种新型半胱天冬酶底物及其突变体的切割。

结论

本研究提出了一种基于切割位点以及下游和上游侧翼序列预测半胱天冬酶底物切割位点的SVM方法。该方法显示出优于现有方法的性能,可能有助于预测迄今未发现的切割位点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9238/1764470/ec9902a4fb5d/1471-2105-7-S5-S14-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验