Suppr超能文献

CaSPredictor:一种用于半胱天冬酶底物预测的新型计算机工具。

CaSPredictor: a new computer-based tool for caspase substrate prediction.

作者信息

Garay-Malpartida H M, Occhiucci J M, Alves J, Belizário J E

机构信息

Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil.

出版信息

Bioinformatics. 2005 Jun;21 Suppl 1:i169-76. doi: 10.1093/bioinformatics/bti1034.

Abstract

MOTIVATION

In vitro studies have shown that the most remarkable catalytic features of caspases, a family of cysteineproteases, are their stringent specificity to Asp (D) in the S1 subsite and at least four amino acids to the left of scissile bound. However, there is little information about the substrate recognition patterns in vivo. The prediction and characterization of proteolytic cleavage sites in natural substrates could be useful for uncovering these structural relationships.

RESULTS

PEST-like sequences rich in the amino acids Ser (S), Thr (T), Pro (P), Glu or Asp (E/D), including Asn (N) and Gln (Q) are adjacent structural/sequential elements in the majority of cleavage site regions of the natural caspase substrates described in the literature, supporting its possible implication in the substrate selection by caspases. We developed CaSPredictor, a software which incorporated a PEST-like index and the position-dependent amino acid matrices for prediction of caspase cleavage sites in individual proteins and protein datasets. The program predicted successfully 81% (111/137) of the cleavage sites in experimentally verified caspase substrates not annotated in its internal data file. Its accuracy and confidence was estimated as 80% using ROC methodology. The program was much more efficient in predicting caspase substrates when compared with PeptideCutter and PEPS software. Finally, the program detected potential cleavage sites in the primary sequences of 1644 proteins in a dataset containing 9986 protein entries.

AVAILABILITY

Requests for software should be made to Dr José E. Belizário

SUPPLEMENTARY INFORMATION

Supplementary information is available for academic users at site http://icb.usp.br/~farmaco/Jose/CaSpredictorfiles.

摘要

动机

体外研究表明,半胱天冬酶家族(一类半胱氨酸蛋白酶)最显著的催化特性是它们对S1亚位点中的天冬氨酸(D)以及切割位点左侧至少四个氨基酸具有严格的特异性。然而,关于体内底物识别模式的信息却很少。预测和表征天然底物中的蛋白水解切割位点可能有助于揭示这些结构关系。

结果

富含丝氨酸(S)、苏氨酸(T)、脯氨酸(P)、谷氨酸或天冬氨酸(E/D),包括天冬酰胺(N)和谷氨酰胺(Q)的类PEST序列,是文献中描述的大多数天然半胱天冬酶底物切割位点区域中的相邻结构/序列元件,这支持了其可能参与半胱天冬酶对底物的选择。我们开发了CaSPredictor软件,该软件结合了类PEST指数和位置依赖性氨基酸矩阵,用于预测单个蛋白质和蛋白质数据集中的半胱天冬酶切割位点。该程序成功预测了其内部数据文件中未注释的经实验验证的半胱天冬酶底物中81%(111/137)的切割位点。使用ROC方法估计其准确性和置信度为80%。与PeptideCutter和PEPS软件相比,该程序在预测半胱天冬酶底物方面效率更高。最后,该程序在一个包含9986个蛋白质条目的数据集中检测到1644个蛋白质一级序列中的潜在切割位点。

可用性

如需该软件,请向何塞·E·贝利扎里奥博士提出请求。

补充信息

学术用户可在网站http://icb.usp.br/~farmaco/Jose/CaSpredictorfiles获取补充信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验