Pau Monita Y M, Davis Mindy I, Orville Allen M, Lipscomb John D, Solomon Edward I
Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
J Am Chem Soc. 2007 Feb 21;129(7):1944-58. doi: 10.1021/ja065671x. Epub 2007 Jan 26.
Various mechanisms have been proposed for the initial O(2) attack in intradiol dioxygenases based on different electronic descriptions of the enzyme-substrate (ES) complex. We have examined the geometric and electronic structure of the high-spin ferric ES complex of protocatechuate 3,4-dioxygenase (3,4-PCD) with UV/visible absorption, circular dichroism (CD), magnetic CD (MCD), and variable-temperature variable-field (VTVH) MCD spectroscopies. The experimental data were coupled with DFT and INDO/S-CI calculations, and an experimentally calibrated bonding description was obtained. The broad absorption spectrum for the ES complex in the 6000-31000 cm(-1) region was resolved into at least five individual transitions, assigned as ligand-to-metal charge transfer (LMCT) from the protocatechuate (PCA) substrate and Tyr408. From our DFT calculations, all five LMCT transitions originate from the PCA and Tyr piop orbitals to the ferric dpi orbitals. The strong pi covalent donor interactions dominate the bonding in the ES complex. Using hypothetical Ga(3+)-catecholate/semiquinone complexes as references, 3,4-PCD-PCA was found to be best described as a highly covalent Fe(3+)-catecholate complex. The covalency is distributed unevenly among the four PCA valence orbitals, with the strongest interaction between the piop-sym and Fe dxz orbitals. This strong pi interaction, as reflected in the lowest energy PCA-to-Fe(3+) LMCT transition, is responsible for substrate activation for the O(2) reaction of intradiol dioxygenases. This involves a multi-electron-transfer (one beta and two alpha) mechanism, with Fe3+ acting as a buffer for the spin-forbidden two-electron redox process between PCA and O(2) in the formation of the peroxy-bridged ESO2 intermediate. The Fe ligand field overcomes the spin-forbidden nature of the triplet O(2) reaction, which potentially results in an intermediate spin state (S = 3/2) on the Fe(3+) center which is stabilized by a change in coordination along the reaction coordinate.
基于对酶 - 底物(ES)复合物的不同电子描述,人们提出了多种机制来解释间苯二酚双加氧酶中最初的O(2)攻击。我们利用紫外/可见吸收光谱、圆二色性(CD)、磁圆二色性(MCD)和变温变场(VTVH)MCD光谱研究了原儿茶酸3,4 - 双加氧酶(3,4 - PCD)的高自旋铁ES复合物的几何和电子结构。将实验数据与密度泛函理论(DFT)和间略微分重叠/全略微分重叠 - 组态相互作用(INDO/S - CI)计算相结合,得到了经过实验校准的键合描述。ES复合物在6000 - 31000 cm(-1)区域的宽吸收光谱被解析为至少五个单独的跃迁,被指定为来自原儿茶酸(PCA)底物和Tyr408的配体到金属的电荷转移(LMCT)。根据我们的DFT计算,所有五个LMCT跃迁均源自PCA和Tyr的π轨道到铁的dπ轨道。强π共价供体相互作用主导了ES复合物中的键合。以假设的Ga(3 +)-儿茶酚/半醌复合物为参考,发现3,4 - PCD - PCA最好被描述为一种高度共价的Fe(3 +)-儿茶酚复合物。共价性在四个PCA价轨道中分布不均,π轨道对称与Fe dxz轨道之间的相互作用最强。这种强π相互作用,如在最低能量的PCA到Fe(3 +)的LMCT跃迁中所反映的,是间苯二酚双加氧酶O(2)反应底物活化的原因。这涉及多电子转移(一个β和两个α)机制,在过氧桥连的ESO2中间体形成过程中,Fe3 +作为PCA与O(2)之间自旋禁阻的双电子氧化还原过程的缓冲剂。铁配体场克服了三线态O(2)反应的自旋禁阻性质,这可能导致Fe(3 +)中心出现中间自旋态(S = 3/2),该自旋态通过沿反应坐标的配位变化而稳定。