Suppr超能文献

水杨酸 5-羟化酶: Rieske 单加氧酶芳香族羟化作用的中间产物。

Salicylate 5-Hydroxylase: Intermediates in Aromatic Hydroxylation by a Rieske Monooxygenase.

机构信息

Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States.

出版信息

Biochemistry. 2019 Dec 31;58(52):5305-5319. doi: 10.1021/acs.biochem.9b00292. Epub 2019 May 15.

Abstract

Rieske oxygenases (ROs) catalyze a large range of oxidative chemistry. We have shown that -dihydrodiol-forming Rieske dioxygenases first react with their aromatic substrates via an active site nonheme Fe(III)-superoxide; electron transfer from the Rieske cluster then completes the product-forming reaction. Alternatively, two-electron-reduced Fe(III)-peroxo or hydroxo-Fe(V)-oxo activated oxygen intermediates are possible and may be utilized by other ROs to expand the catalytic range. Here, the reaction of a Rieske monooxygenase, salicylate 5-hydroxylase, that does not form a -dihydrodiol is examined. Single-turnover kinetic studies show fast binding of salicylate and O. Transfer of the Rieske electron required to form the gentisate product occurs through bonds over ∼12 Å and must also be very fast. However, the observed rate constant for this reaction is much slower than expected and sensitive to substrate type. This suggests that initial reaction with salicylate occurs using the same Fe(III)-superoxo-level intermediate as Rieske dioxygenases and that this reaction limits the observed rate of electron transfer. A transient intermediate (λ = 700 nm) with an electron paramagnetic resonance (EPR) at = 4.3 is observed after the product is formed in the active site. The use of O ( = /) results in hyperfine broadening of the = 4.3 signal, showing that gentisate binds to the mononuclear iron via its C5-OH in the intermediate. The chromophore and EPR signal allow study of product release in the catalytic cycle. Comparison of the kinetics of single- and multiple-turnover reactions shows that re-reduction of the metal centers accelerates product release ∼300-fold, providing insight into the regulatory mechanism of ROs.

摘要

Rieske 加氧酶(RO)催化多种氧化反应。我们已经证明, -二羟化 Rieske 双加氧酶首先通过活性位点非血红素 Fe(III)-超氧阴离子与芳香族底物反应;然后,来自 Rieske 簇的电子转移完成产物形成反应。或者,双电子还原的 Fe(III)-过氧或羟基金属铁(V)-氧代激活的氧中间物也是可能的,并可能被其他 RO 用于扩展催化范围。在这里,我们研究了一种不形成 -二羟化物的 Rieske 单加氧酶,即水杨酸 5-羟化酶。单轮动力学研究表明水杨酸和 O 的快速结合。形成龙胆酸产物所需的 Rieske 电子转移通过约 12 Å 的键发生,也必须非常快。然而,观察到的反应速率常数比预期的慢,并且对底物类型敏感。这表明初始反应与 Rieske 双加氧酶一样使用相同的 Fe(III)-超氧阴离子中间物,并且该反应限制了电子转移的观察速率。在活性位点中形成产物后,观察到一个具有电子顺磁共振(EPR)在 = 4.3 的瞬态中间物(λ = 700 nm)。使用 O( = /)导致 = 4.3 信号的超精细展宽,表明龙胆酸盐通过其 C5-OH 在中间物中与单核铁结合。发色团和 EPR 信号允许在催化循环中研究产物释放。单轮和多轮反应动力学的比较表明,金属中心的再还原加速了产物释放约 300 倍,为 RO 的调节机制提供了深入的了解。

相似文献

引用本文的文献

1
Custom tuning of Rieske oxygenase reactivity.定制 Rieske 加氧酶反应性。
Nat Commun. 2023 Sep 20;14(1):5858. doi: 10.1038/s41467-023-41428-x.

本文引用的文献

1
C-H Hydroxylation in Paralytic Shellfish Toxin Biosynthesis.麻痹性贝类毒素生物合成中的 C-H 羟化作用。
J Am Chem Soc. 2018 Sep 19;140(37):11863-11869. doi: 10.1021/jacs.8b08901. Epub 2018 Sep 7.
6
O Activation by Non-Heme Iron Enzymes.非血红素铁酶的激活作用。
Biochemistry. 2016 Nov 22;55(46):6363-6374. doi: 10.1021/acs.biochem.6b00635. Epub 2016 Nov 14.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验