Brown Christina D, Neidig Michael L, Neibergall Matthew B, Lipscomb John D, Solomon Edward I
Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
J Am Chem Soc. 2007 Jun 13;129(23):7427-38. doi: 10.1021/ja071364v. Epub 2007 May 17.
Isopenicillin N synthase (IPNS) is a unique mononuclear nonheme Fe enzyme that catalyzes the four-electron oxidative double ring closure of its substrate ACV. A combination of spectroscopic techniques including EPR, absorbance, circular dichroism (CD), magnetic CD, and variable-temperature, variable-field MCD (VTVH-MCD) were used to evaluate the geometric and electronic structure of the [FeNO]7 complex of IPNS coordinated with the ACV thiolate ligand. Density Function Theory (DFT) calculations correlated to the spectroscopic data were used to generate an experimentally calibrated bonding description of the Fe-IPNS-ACV-NO complex. New spectroscopic features introduced by the binding of the ACV thiolate at 13 100 and 19 800 cm-1 are assigned as the NO pi*(ip) --> Fe dx2-y2 and S pi--> Fe dx2-y2 charge transfer (CT) transitions, respectively. Configuration interaction mixes S CT character into the NO pi*(ip) --> Fe dx2-y2 CT transition, which is observed experimentally from the VTVH-MCD data from this transition. Calculations on the hypothetical {FeO2}8 complex of Fe-IPNS-ACV reveal that the configuration interaction present in the [FeNO]7 complex results in an unoccupied frontier molecular orbital (FMO) with correct orientation and distal O character for H-atom abstraction from the ACV substrate. The energetics of NO/O2 binding to Fe-IPNS-ACV were evaluated and demonstrate that charge donation from the ACV thiolate ligand renders the formation of the FeIII-superoxide complex energetically favorable, driving the reaction at the Fe center. This single center reaction allows IPNS to avoid the O2 bridged binding generally invoked in other nonheme Fe enzymes that leads to oxygen insertion (i.e., oxygenase function) and determines the oxidase activity of IPNS.
异青霉素N合酶(IPNS)是一种独特的单核非血红素铁酶,可催化其底物ACV的四电子氧化双环闭合反应。采用包括电子顺磁共振(EPR)、吸光度、圆二色性(CD)、磁圆二色性以及变温、变场磁圆二色性(VTVH-MCD)等多种光谱技术,来评估与ACV硫醇盐配体配位的IPNS的[FeNO]7配合物的几何结构和电子结构。与光谱数据相关的密度泛函理论(DFT)计算,用于生成Fe-IPNS-ACV-NO配合物经过实验校准的键合描述。ACV硫醇盐在13100和19800 cm-1处结合引入的新光谱特征,分别被指定为NO π*(ip)→Fe dx2-y2和S π→Fe dx2-y2电荷转移(CT)跃迁。组态相互作用将S CT特征混入NO π*(ip)→Fe dx2-y2 CT跃迁中,这从该跃迁的VTVH-MCD数据中通过实验观察到。对Fe-IPNS-ACV的假设{FeO2}8配合物的计算表明,[FeNO]7配合物中存在的组态相互作用导致了一个未占据的前沿分子轨道(FMO),其具有正确的取向和远端O特征,可用于从ACV底物上提取H原子。评估了NO/O2与Fe-IPNS-ACV结合的能量学,结果表明ACV硫醇盐配体的电荷捐赠使得FeIII-超氧化物配合物的形成在能量上是有利的,从而驱动Fe中心的反应。这种单中心反应使IPNS能够避免在其他非血红素铁酶中通常出现的O2桥连结合,这种结合会导致氧插入(即加氧酶功能),并决定了IPNS的氧化酶活性。