Benvin Andrea L, Creeger Yehuda, Fisher Gregory W, Ballou Byron, Waggoner Alan S, Armitage Bruce A
Department of Chemistry and Molecular Biosensor and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, USA.
J Am Chem Soc. 2007 Feb 21;129(7):2025-34. doi: 10.1021/ja066354t. Epub 2007 Jan 26.
Fluorescence detection and imaging are vital technologies in the life sciences and clinical diagnostics. The key to obtaining high-resolution images and sensitive detection is to use fluorescent molecules or particles that absorb and emit visible light with high efficiency. We have synthesized supramolecular complexes consisting of a branched DNA template and fluorogenic intercalating dyes. Because dyes can intercalate up to every other base pair, high densities of fluorophores are assembled yet the DNA template keeps them far enough away from each other to prevent self-quenching. The efficiency with which these noncovalent assemblies absorb light is more than 10-fold greater than that of the individual dye molecules. Förster resonance energy transfer from the intercalated dyes to covalently attached acceptor dyes is very efficient, allowing for wavelength shifting of the emission spectrum. Simple biotinylation of the DNA template allows for labeling of streptavidin-coated synthetic microspheres and mouse T-cells.
荧光检测与成像技术在生命科学和临床诊断中至关重要。获得高分辨率图像和高灵敏度检测的关键在于使用能够高效吸收和发射可见光的荧光分子或颗粒。我们合成了由分支DNA模板和荧光嵌入染料组成的超分子复合物。由于染料可以每隔一个碱基对嵌入,因此可组装出高密度的荧光团,但DNA模板使它们彼此保持足够远的距离以防止自猝灭。这些非共价组装体吸收光的效率比单个染料分子高出10倍以上。从嵌入染料到共价连接的受体染料的荧光共振能量转移非常高效,从而实现发射光谱的波长转换。DNA模板的简单生物素化可用于标记链霉亲和素包被的合成微球和小鼠T细胞。