Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, United States of America.
Angew Chem Int Ed Engl. 2024 Nov 4;63(45):e202411115. doi: 10.1002/anie.202411115. Epub 2024 Sep 29.
Polymeric supramolecular hydrogels (PSHs) leverage the thermodynamic and kinetic properties of non-covalent interactions between polymer chains to govern their structural characteristics. As these materials are formed via endothermic or exothermic equilibria, their thermal response is challenging to control without drastically changing the nature of the chemistry used to join them. In this study, we introduce a novel class of PSHs utilizing the intercalation of double-stranded DNA (dsDNA) as the primary dynamic non-covalent interaction. The resulting dsDNA intercalating supramolecular hydrogels (DISHs) can be tuned to exhibit both endothermically or exothermically driven binding through strategic selection of intercalators. Bifunctional polyethylene glycol (M~2000 Da) capped with intercalators of varying hydrophobicity, charge, and size (acridine, psoralen, thiazole orange, and phenanthridine) produced DISHs with comparable moduli (500-1000 Pa), but unique thermal viscoelastic responses. Notably, acridine-based cross-linkers displayed invariant and even increasing relaxation times with temperature, suggesting an endothermic binding mechanism. This methodology expands the set of structure-properties available to biomass-derived DNA biomaterials and promises a new material system where a broad set of thermal and viscoelastic responses can be obtained due to the sheer number and variety of intercalating molecules.
高分子超分子水凝胶 (PSHs) 利用聚合物链之间非共价相互作用的热力学和动力学特性来控制其结构特征。由于这些材料是通过吸热或放热平衡形成的,因此如果不彻底改变用于连接它们的化学性质,就很难控制它们的热响应。在这项研究中,我们引入了一类新型的 PSH,利用双链 DNA (dsDNA) 的嵌入作为主要的动态非共价相互作用。通过策略性选择嵌入剂,所得的 dsDNA 嵌入超分子水凝胶 (DISH) 可以调节为表现出吸热或放热驱动的结合。带有不同疏水性、电荷和大小的嵌入剂(吖啶、补骨脂素、噻唑橙和菲啶)封端的双官能化聚乙二醇(M~2000 Da)产生了具有可比模量(500-1000 Pa)但具有独特热粘弹性响应的 DISH。值得注意的是,基于吖啶的交联剂在温度下显示出不变甚至增加的松弛时间,表明存在吸热结合机制。这种方法扩展了基于生物质衍生 DNA 生物材料的结构-性能组合,并有望获得新的材料系统,因为嵌入分子的数量和种类繁多,可以获得广泛的热和粘弹性响应。