Suppr超能文献

基于模型的快速事件相关功能近红外光谱(NIRS)数据的分析:一项参数验证研究。

Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study.

作者信息

Plichta M M, Heinzel S, Ehlis A-C, Pauli P, Fallgatter A J

机构信息

Department of Psychiatry and Psychotherapy, University of Würzburg, Laboratory for Psychophysiology and Functional Imaging, Fuechsleinstrasse 15, 97080 Würzburg, Germany.

出版信息

Neuroimage. 2007 Apr 1;35(2):625-34. doi: 10.1016/j.neuroimage.2006.11.028. Epub 2007 Jan 25.

Abstract

To validate the usefulness of a model-based analysis approach according to the general linear model (GLM) for functional near-infrared spectroscopy (fNIRS) data, a rapid event-related paradigm with an unpredictable stimulus sequence was applied to 15 healthy subjects. A parametric design was chosen wherein four differently graded contrasts of a flickering checkerboard were presented, allowing directed hypotheses about the rank order of the evoked hemodynamic response amplitudes. The results indicate the validity of amplitude estimation by three main findings (a) the GLM approach for fNIRS data is capable to identify human brain activation in the visual cortex with inter-stimulus intervals of 4-9 s (6.5 s average) whereas in non-visual areas no systematic activation was detectable; (b) the different contrast level intensities lead to the hypothesized rank order of the GLM amplitude parameters: visual cortex activation evoked by highest contrast>moderate contrast>lowest contrast>no stimulation; (c) analysis of null-events (no stimulation) did not produce any significant activation in the visual cortex or in other brain areas. We conclude that a model-based GLM approach delivers valid fNIRS amplitude estimations and enables the analysis of rapid event-related fNIRS data series, which is highly relevant in particular for cognitive fNIRS studies.

摘要

为验证基于一般线性模型(GLM)的分析方法对功能近红外光谱(fNIRS)数据的有效性,对15名健康受试者应用了具有不可预测刺激序列的快速事件相关范式。采用参数设计,其中呈现了闪烁棋盘的四种不同等级对比度,从而能够对诱发的血流动力学反应幅度的等级顺序提出定向假设。结果通过三个主要发现表明了幅度估计的有效性:(a)fNIRS数据的GLM方法能够在刺激间隔为4 - 9秒(平均6.5秒)时识别视觉皮层中的人脑激活,而在非视觉区域未检测到系统性激活;(b)不同的对比度水平强度导致了GLM幅度参数的假设等级顺序:最高对比度诱发的视觉皮层激活>中等对比度>最低对比度>无刺激;(c)对空事件(无刺激)的分析在视觉皮层或其他脑区未产生任何显著激活。我们得出结论,基于模型的GLM方法能够提供有效的fNIRS幅度估计,并能够分析快速事件相关的fNIRS数据系列,这对于认知fNIRS研究尤其重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验