da Rocha Amaral Selene, Rabbani Said R, Caticha Nestor
Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil.
Neuroimage. 2007 Jun;36(2):361-9. doi: 10.1016/j.neuroimage.2006.11.058. Epub 2006 Dec 19.
We present a non parametric Bayesian multiscale method to characterize the Hemodynamic Response HR as function of time. This is done by extending and adapting the Multigrid Priors (MGP) method proposed in (S.D.R. Amaral, S.R. Rabbani, N. Caticha, Multigrid prior for a Bayesian approach to fMRI, NeuroImage 23 (2004) 654-662; N. Caticha, S.D.R. Amaral, S.R. Rabbani, Multigrid Priors for fMRI time series analysis, AIP Conf. Proc. 735 (2004) 27-34). We choose an initial HR model and apply the MGP method to assign a posterior probability of activity for every pixel. This can be used to construct the map of activity. But it can also be used to construct the posterior averaged time series activity for different regions. This permits defining a new model which is only data-dependent. Now in turn it can be used as the model behind a new application of the MGP method to obtain another posterior probability of activity. The method converges in just a few iterations and is quite independent of the original HR model, as long as it contains some information of the activity/rest state of the patient. We apply this method of HR inference both to simulated and real data of blocks and event-related experiments. Receiver operating characteristic (ROC) curves are used to measure the number of errors with respect to a few hyperparameters. We also study the deterioration of the results for real data, under information loss. This is done by decreasing the signal to noise ratio and also by decreasing the number of images available for analysis and compare the robustness to other methods.
我们提出了一种非参数贝叶斯多尺度方法,用于将血液动力学响应(HR)表征为时间的函数。这是通过扩展和改编(S.D.R. Amaral、S.R. Rabbani、N. Caticha,《用于功能磁共振成像贝叶斯方法的多重网格先验》,《神经图像》23(2004年)654 - 662;N. Caticha、S.D.R. Amaral、S.R. Rabbani,《功能磁共振成像时间序列分析的多重网格先验》,AIP会议论文集735(2004年)27 - 34)中提出的多重网格先验(MGP)方法来实现的。我们选择一个初始的HR模型,并应用MGP方法为每个像素分配活动的后验概率。这可用于构建活动图。但它也可用于构建不同区域的后验平均时间序列活动。这允许定义一个仅依赖于数据的新模型。现在反过来,它又可以用作MGP方法新应用背后的模型,以获得另一个活动的后验概率。该方法在几次迭代中就会收敛,并且相当独立于原始的HR模型,只要它包含患者活动/静息状态的一些信息即可。我们将这种HR推断方法应用于块设计和事件相关实验的模拟数据和真实数据。使用接收者操作特征(ROC)曲线来测量关于几个超参数的错误数量。我们还研究了在信息丢失情况下真实数据结果的恶化情况。这是通过降低信噪比以及减少可用于分析的图像数量来实现的,并将其稳健性与其他方法进行比较。