Suppr超能文献

酵母中的RNA聚合酶I转录动态核小体rDNA。

RNA polymerase I in yeast transcribes dynamic nucleosomal rDNA.

作者信息

Jones Hannah S, Kawauchi Junya, Braglia Priscilla, Alen Claudia M, Kent Nicholas A, Proudfoot Nick J

机构信息

Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.

出版信息

Nat Struct Mol Biol. 2007 Feb;14(2):123-30. doi: 10.1038/nsmb1199. Epub 2007 Jan 28.

Abstract

RNA polymerase (Pol) I-transcribed ribosomal genes of budding yeast exist as a tandem array (about 150 repeats) with transcription units separated by spacer sequences. Half of these rDNAs are inactivated by repressive chromatin structure, whereas the rest exist in an open conformation transcribed by closely spaced Pol I elongation complexes. Whereas previous studies have suggested that active rDNA is devoid of nucleosomal structure, we demonstrate that active rDNA has nucleosomal structure, according to chromatin immunoprecipitation and biochemical fractionation. Using a yeast strain with reduced numbers of all actively transcribed rDNA repeats, we show that rDNA exists in a dynamic chromatin structure of unphased nucleosomes. Furthermore, it is associated with chromatin-remodeling enzymes Chd1p, Isw1p and Isw2p, whose inactivation causes defects in transcription termination. We suggest that Pol I transcription, like that of Pol II, may be modulated by specific chromatin structures.

摘要

芽殖酵母中由RNA聚合酶(Pol)I转录的核糖体基因以串联阵列形式存在(约150个重复序列),其转录单元由间隔序列分隔。这些核糖体DNA(rDNA)的一半因抑制性染色质结构而失活,而其余部分则以开放构象存在,由紧密排列的Pol I延伸复合物进行转录。尽管先前的研究表明活性rDNA没有核小体结构,但根据染色质免疫沉淀和生化分级分离实验,我们证明活性rDNA具有核小体结构。使用所有活跃转录的rDNA重复序列数量减少的酵母菌株,我们发现rDNA存在于未相位化核小体的动态染色质结构中。此外,它与染色质重塑酶Chd1p、Isw1p和Isw2p相关,这些酶的失活会导致转录终止缺陷。我们认为,Pol I转录可能与Pol II转录一样,受特定染色质结构的调节。

相似文献

1
RNA polymerase I in yeast transcribes dynamic nucleosomal rDNA.
Nat Struct Mol Biol. 2007 Feb;14(2):123-30. doi: 10.1038/nsmb1199. Epub 2007 Jan 28.
2
RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure.
J Biol Chem. 2020 Apr 10;295(15):4782-4795. doi: 10.1074/jbc.RA119.011827. Epub 2020 Feb 14.
7
Chromatin Remodeling Factors Isw2 and Ino80 Regulate Chromatin, Replication, and Copy Number of the Ribosomal DNA Locus.
Genetics. 2018 Dec;210(4):1543-1556. doi: 10.1534/genetics.118.301579. Epub 2018 Oct 24.
8
The Transcription Factor THO Promotes Transcription Initiation and Elongation by RNA Polymerase I.
J Biol Chem. 2016 Feb 5;291(6):3010-8. doi: 10.1074/jbc.M115.673442. Epub 2015 Dec 9.
9
Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast.
Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):649-54. doi: 10.1073/pnas.022373099. Epub 2002 Jan 8.

引用本文的文献

1
Nucleosome retention by histone chaperones and remodelers occludes pervasive DNA-protein binding.
Nucleic Acids Res. 2023 Sep 8;51(16):8496-8513. doi: 10.1093/nar/gkad615.
2
Comparative Research: Regulatory Mechanisms of Ribosomal Gene Transcription in and .
Biomolecules. 2023 Feb 3;13(2):288. doi: 10.3390/biom13020288.
3
Establishment and Maintenance of Open Ribosomal RNA Gene Chromatin States in Eukaryotes.
Methods Mol Biol. 2022;2533:25-38. doi: 10.1007/978-1-0716-2501-9_2.
5
The chromatin organization of a chlorarachniophyte nucleomorph genome.
Genome Biol. 2022 Mar 1;23(1):65. doi: 10.1186/s13059-022-02639-5.
6
The Ribosomal Gene Loci-The Power behind the Throne.
Genes (Basel). 2021 May 18;12(5):763. doi: 10.3390/genes12050763.
7
Spt4 Promotes Pol I Processivity and Transcription Elongation.
Genes (Basel). 2021 Mar 12;12(3):413. doi: 10.3390/genes12030413.
8
Long-range single-molecule mapping of chromatin accessibility in eukaryotes.
Nat Methods. 2020 Mar;17(3):319-327. doi: 10.1038/s41592-019-0730-2. Epub 2020 Feb 10.
9
Coordinated Control of rRNA Processing by RNA Polymerase I.
Trends Genet. 2019 Oct;35(10):724-733. doi: 10.1016/j.tig.2019.07.002. Epub 2019 Jul 26.
10
Nucleolar Structure and Function in Trypanosomatid Protozoa.
Cells. 2019 May 8;8(5):421. doi: 10.3390/cells8050421.

本文引用的文献

1
Ribosomal chromatin organization.
Biochem Cell Biol. 2006 Aug;84(4):444-9. doi: 10.1139/o06-089.
2
Histones are required for transcription of yeast rRNA genes by RNA polymerase I.
Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10129-34. doi: 10.1073/pnas.0504563102. Epub 2005 Jul 7.
4
Elongation by RNA polymerase II: the short and long of it.
Genes Dev. 2004 Oct 15;18(20):2437-68. doi: 10.1101/gad.1235904.
5
At the crossroads of growth control; making ribosomal RNA.
Curr Opin Genet Dev. 2004 Apr;14(2):210-7. doi: 10.1016/j.gde.2004.02.005.
6
Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer?
Curr Opin Genet Dev. 2004 Apr;14(2):165-73. doi: 10.1016/j.gde.2004.01.007.
7
Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes.
EMBO J. 2004 Jul 7;23(13):2620-31. doi: 10.1038/sj.emboj.7600261. Epub 2004 Jun 10.
8
New perspectives on connecting messenger RNA 3' end formation to transcription.
Curr Opin Cell Biol. 2004 Jun;16(3):272-8. doi: 10.1016/j.ceb.2004.03.007.
9
Transcriptional termination by RNA polymerase I requires the small subunit Rpa12p.
Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6068-73. doi: 10.1073/pnas.0401393101. Epub 2004 Apr 8.
10
ATP-dependent nucleosome remodeling complexes: enzymes tailored to deal with chromatin.
J Cell Biochem. 2004 Apr 15;91(6):1087-98. doi: 10.1002/jcb.20005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验