Kim Do-Kyun, Kerman Kagan, Saito Masato, Sathuluri Ramachandra Rao, Endo Tatsuro, Yamamura Shohei, Kwon Young-Soo, Tamiya Eiichi
School of Materials Science, Japan Advanced Institute of Science & Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan.
Anal Chem. 2007 Mar 1;79(5):1855-64. doi: 10.1021/ac061909o. Epub 2007 Jan 30.
In this report, we developed a new optical biosensor in connection with a gold-deposited porous anodic alumina (PAA) layer chip. In our sensor, we observed that the gold deposition onto the chip surface formed a "caplike" layer on the top of the oxide nanostructures in an orderly fashion, so we called this new surface formation a "gold-capped oxide nanostructure". As a result of its interferometric and localized surface plasmon resonance properties, the relative reflected intensity (RRI) at surface of the chip resulted in an optical pattern that was highly sensitive to the changes in the effective thickness of the biomolecular layer. We demonstrated the method on the detection of picomolar quantities of untagged oligonucleotides and the hybridization with synthetic and PCR-amplified DNA samples. The detection limit of our PAA layer chip was determined as 10 pM synthetic target DNA. The capability of observing both RRI increment and wavelength shift upon biomolecular interactions promises to make our chip widely applicable in various analytical tests.
在本报告中,我们开发了一种与沉积有金的多孔阳极氧化铝(PAA)层芯片相关的新型光学生物传感器。在我们的传感器中,我们观察到芯片表面的金沉积以有序的方式在氧化物纳米结构顶部形成了一个“帽状”层,因此我们将这种新的表面结构称为“金帽氧化物纳米结构”。由于其干涉和局域表面等离子体共振特性,芯片表面的相对反射强度(RRI)产生了一种对生物分子层有效厚度变化高度敏感的光学图案。我们展示了该方法用于检测皮摩尔量的无标记寡核苷酸以及与合成和PCR扩增的DNA样品的杂交。我们的PAA层芯片的检测限确定为10 pM合成靶DNA。在生物分子相互作用时观察到RRI增加和波长偏移的能力有望使我们的芯片广泛应用于各种分析测试。