Savtchenko Leonid P, Rusakov Dmitri A
Institute of Neurology, University College London, Queen Square, London, United Kingdom.
Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1823-8. doi: 10.1073/pnas.0606636104. Epub 2007 Jan 29.
Signal integration in the brain is determined by the size and kinetics of rapid synaptic responses. The latter, in turn, depends on the concentration profile of neurotransmitter in the synaptic cleft. According to a traditional view, narrower clefts should correspond to higher intracleft concentrations of neurotransmitter, and therefore to the enhanced activation of synaptic receptors. Here, we argue that narrowing the cleft also increases electrical resistance of the intracleft medium and therefore reduces local receptor currents. We employ detailed theoretical analyses and Monte Carlo simulations to propose that these two contrasting phenomena result in a relatively narrow range of cleft heights at which the synaptic receptor current reaches its maximum. Over a physiological range of synaptic parameters, the "optimum" height falls between approximately 12 and 20 nm. This range is consistent with the structure of central synapses reported by electron microscopy. Therefore, our results suggest that a simple fundamental principle may underlie the synaptic cleft architecture: to maximize synaptic strength.
大脑中的信号整合由快速突触反应的大小和动力学决定。而后者又取决于突触间隙中神经递质的浓度分布。根据传统观点,较窄的突触间隙应对应较高的间隙内神经递质浓度,进而对应突触受体激活增强。在此,我们认为缩小突触间隙也会增加间隙内介质的电阻,从而降低局部受体电流。我们采用详细的理论分析和蒙特卡罗模拟,提出这两种相反的现象导致突触间隙高度在相对较窄的范围内,突触受体电流达到最大值。在生理范围内的突触参数下,“最佳”高度在约12至20纳米之间。这个范围与电子显微镜报道的中枢突触结构一致。因此,我们的结果表明,一个简单的基本原理可能是突触间隙结构的基础:使突触强度最大化。