Scott Ricardo, Rusakov Dmitri A
Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.
J Neurosci. 2006 Jun 28;26(26):7071-81. doi: 10.1523/JNEUROSCI.0946-06.2006.
Synaptic transmission between hippocampal mossy fibers (MFs) and CA3 pyramidal cells exhibits remarkable use-dependent plasticity. The underlying presynaptic mechanisms, however, remain poorly understood. Here, we have used fluorescent Ca2+ indicators Fluo-4, Fluo-5F, and Oregon Green BAPTA-1 to investigate Ca2+ dynamics in individual giant MF boutons (MFBs) in area CA3 traced from the somata of granule cells held in whole-cell mode. In an individual MFB, a single action potential induces a brief peak of free Ca2+ (estimated in the range of 8-9 microm) followed by an elevation to approximately 320 nm, which slowly decays to its resting level of approximately 110 nm. Changes in the somatic membrane potential influence presynaptic Ca2+ entry at proximal MFBs in the hilus. This influence decays with distance along the axon, with a length constant of approximately 200 microm. In giant MFBs in CA3, progressive saturation of endogenous Ca2+ buffers during repetitive spiking amplifies rapid Ca2+ peaks and the residual Ca2+ severalfold, suggesting a causal link to synaptic facilitation. We find that internal Ca2+ stores contribute to maintaining the low resting Ca2+ providing approximately 22% of the buffering/extrusion capacity of giant MFBs. Rapid Ca2+ release from stores represents up to 20% of the presynaptic Ca2+ transient evoked by a brief train of action potentials. The results identify the main components of presynaptic Ca2+ dynamics at this important cortical synapse.
海马苔藓纤维(MFs)与CA3锥体细胞之间的突触传递表现出显著的使用依赖性可塑性。然而,其潜在的突触前机制仍知之甚少。在这里,我们使用荧光Ca2+指示剂Fluo-4、Fluo-5F和俄勒冈绿BAPTA-1来研究从全细胞模式下的颗粒细胞胞体追踪到的CA3区单个巨大MF终扣(MFBs)中的Ca2+动态变化。在单个MFB中,单个动作电位会诱发一个短暂的游离Ca2+峰值(估计在8 - 9微米范围内),随后升高到约320纳米,然后缓慢衰减至其约110纳米的静息水平。胞体膜电位的变化会影响海马门近端MFBs处的突触前Ca2+内流。这种影响沿轴突随距离衰减,长度常数约为200微米。在CA3区的巨大MFBs中,重复放电期间内源性Ca2+缓冲剂的逐渐饱和会使快速Ca2+峰值和残余Ca2+放大几倍,这表明与突触易化存在因果联系。我们发现内部Ca2+储存有助于维持低静息Ca2+水平,提供了巨大MFBs约22%的缓冲/外排能力。从储存中快速释放的Ca2+占短暂动作电位串诱发的突触前Ca2+瞬变的比例高达20%。这些结果确定了这个重要皮质突触处突触前Ca2+动态变化的主要组成部分。