Baker-Austin Craig, Dopson Mark, Wexler Margaret, Sawers R Gary, Stemmler Ann, Rosen Barry P, Bond Philip L
School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
Extremophiles. 2007 May;11(3):425-34. doi: 10.1007/s00792-006-0052-z. Epub 2007 Feb 1.
'Ferroplasma acidarmanus' Fer1 is an arsenic-hypertolerant acidophilic archaeon isolated from the Iron Mountain mine, California; a site characterized by heavy metals contamination. The presence of up to 10 g arsenate per litre [As(V); 133 mM] did not significantly reduce growth yields, whereas between 5 and 10 g arsenite per litre [As(III); 67-133 mM] significantly reduced the yield. Previous bioinformatic analysis indicates that 'F. acidarmanus' Fer1 has only two predicted genes involved in arsenic resistance and lacks a recognizable gene for an arsenate reductase. Biochemical analysis suggests that 'F. acidarmanus' Fer1 does not reduce arsenate indicating that 'F. acidarmanus' Fer1 has an alternative resistance mechanism to arsenate other than reduction to arsenite and efflux. Primer extension analysis of the putative ars transcriptional regulator (arsR) and efflux pump (arsB) demonstrated that these genes are co-transcribed, and expressed in response to arsenite, but not arsenate. Two-dimensional polyacrylamide gel electrophoresis analysis of 'F. acidarmanus' Fer1 cells exposed to arsenite revealed enhanced expression of proteins associated with protein refolding, including the thermosome Group II HSP60 family chaperonin and HSP70 DnaK type heat shock proteins. This report represents the first molecular and proteomic study of arsenic resistance in an acidophilic archaeon.
“嗜酸铁原体”Fer1是一种从加利福尼亚州铁山矿分离出的耐砷嗜酸古菌;该矿以重金属污染为特征。每升高达10克的砷酸盐[As(V);133毫摩尔]的存在并未显著降低生长产量,而每升5至10克的亚砷酸盐[As(III);67 - 133毫摩尔]则显著降低了产量。先前的生物信息学分析表明,“嗜酸铁原体”Fer1仅具有两个预测的与抗砷相关的基因,并且缺乏一个可识别的砷酸盐还原酶基因。生化分析表明,“嗜酸铁原体”Fer1不会还原砷酸盐,这表明“嗜酸铁原体”Fer1除了将砷酸盐还原为亚砷酸盐并外排之外,还有另一种抗砷机制。对假定的砷转录调节因子(arsR)和外排泵(arsB)的引物延伸分析表明,这些基因是共转录的,并响应亚砷酸盐而非砷酸盐表达。对暴露于亚砷酸盐的“嗜酸铁原体”Fer1细胞进行的二维聚丙烯酰胺凝胶电泳分析显示,与蛋白质重折叠相关的蛋白质表达增强,包括热体II型HSP60家族伴侣蛋白和HSP70 DnaK型热休克蛋白。本报告代表了对嗜酸古菌抗砷性的首次分子和蛋白质组学研究。