Suppr超能文献

一种用于R-R间期序列滤波的高效算法。

An efficient algorithm for R-R intervals series filtering.

作者信息

Logier R, De Jonckheere J, Dassonneville A

机构信息

Institut de Technologie Médicale, CHRU de Lille, France.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2004;2004:3937-40. doi: 10.1109/IEMBS.2004.1404100.

Abstract

Spectral analysis of heart rate variability (HRV) constitute a simple and non invasive way to study the autonomic nervous system (ANS) activity. On-line implementation of this technique would allow to follow the evolution of the ANS activity and to track transient events during medical procedures. However, continuous spectral analysis of HRV is not reliable enough due to the difficulty to obtain a noiseless ECG signal during a long period. Indeed, the consequential effects of each ECG signal perturbation on the R-R intervals gives an erroneous evaluation of HRV spectral analysis. In this article, we describe a real time filtering algorithm for R-R intervals series. This filter is able to detect each disturbed area and to replace the erroneous samples with the most probable ones. Therefore, this method allows detecting and replacing up to 90 % of R-R series erroneous samples while keeping the real recording time and without having any effect, beyond measure, on the frequency analysis result.

摘要

心率变异性(HRV)的频谱分析是研究自主神经系统(ANS)活动的一种简单且无创的方法。该技术的在线实施将有助于追踪ANS活动的演变,并在医疗程序中跟踪瞬态事件。然而,由于长时间难以获得无噪声的心电图信号,HRV的连续频谱分析不够可靠。实际上,每个心电图信号扰动对R-R间期的后续影响会对HRV频谱分析产生错误的评估。在本文中,我们描述了一种针对R-R间期序列的实时滤波算法。该滤波器能够检测每个受干扰区域,并用最可能的值替换错误样本。因此,该方法能够检测并替换高达90%的R-R序列错误样本,同时保持实际记录时间,并且对频率分析结果没有任何无法估量的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验