Suppr超能文献

基于光电容积脉搏波信号的深度神经网络疼痛分类器

A Deep Neural Network-Based Pain Classifier Using a Photoplethysmography Signal.

机构信息

Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea.

Department of Anaesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.

出版信息

Sensors (Basel). 2019 Jan 18;19(2):384. doi: 10.3390/s19020384.

Abstract

Side effects occur when excessive or low doses of analgesics are administered compared to the required amount to mediate the pain induced during surgery. It is important to accurately assess the pain level of the patient during surgery. We proposed a pain classifier based on a deep belief network (DBN) using photoplethysmography (PPG). Our DBN learned about a complex nonlinear relationship between extracted PPG features and pain status based on the numeric rating scale (NRS). A bagging ensemble model was used to improve classification performance. The DBN classifier showed better classification results than multilayer perceptron neural network (MLPNN) and support vector machine (SVM) models. In addition, the classification performance was improved when the selective bagging model was applied compared with the use of each single model classifier. The pain classifier based on DBN using a selective bagging model can be helpful in developing a pain classification system.

摘要

当给予的镇痛药剂量过高或过低时,与介导手术引起的疼痛所需的剂量相比,会出现副作用。重要的是要在手术过程中准确评估患者的疼痛程度。我们提出了一种基于深度置信网络(DBN)的疼痛分类器,使用光体积描记法(PPG)。我们的 DBN 根据数字评分量表(NRS),学习了从提取的 PPG 特征到疼痛状态之间的复杂非线性关系。使用袋装集成模型提高了分类性能。DBN 分类器的分类结果优于多层感知机神经网络(MLPNN)和支持向量机(SVM)模型。此外,与使用每个单一模型分类器相比,当应用选择性袋装模型时,分类性能得到了提高。基于选择性袋装模型的 DBN 的疼痛分类器有助于开发疼痛分类系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7508/6358962/9f68d8eb033f/sensors-19-00384-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验