Suppr超能文献

基于改进模拟退火算法的适形调强放疗治疗计划多目标优化

Multiobjective optimization with a modified simulated annealing algorithm for external beam radiotherapy treatment planning.

作者信息

Aubry Jean-François, Beaulieu Frédéric, Sévigny Caroline, Beaulieu Luc, Tremblay Daniel

机构信息

Département de Radio-Oncologie et Centre de Recherche en Cancérologie, CHUQ Pavilion L'Hôtel-Dieu de Quebec, Quebec, Quebec, Canada.

出版信息

Med Phys. 2006 Dec;33(12):4718-29. doi: 10.1118/1.2390550.

Abstract

Inverse planning in external beam radiotherapy often requires a scalar objective function that incorporates importance factors to mimic the planner's preferences between conflicting objectives. Defining those importance factors is not straightforward, and frequently leads to an iterative process in which the importance factors become variables of the optimization problem. In order to avoid this drawback of inverse planning, optimization using algorithms more suited to multiobjective optimization, such as evolutionary algorithms, has been suggested. However, much inverse planning software, including one based on simulated annealing developed at our institution, does not include multiobjective-oriented algorithms. This work investigates the performance of a modified simulated annealing algorithm used to drive aperture-based intensity-modulated radiotherapy inverse planning software in a multiobjective optimization framework. For a few test cases involving gastric cancer patients, the use of this new algorithm leads to an increase in optimization speed of a little more than a factor of 2 over a conventional simulated annealing algorithm, while giving a close approximation of the solutions produced by a standard simulated annealing. A simple graphical user interface designed to facilitate the decision-making process that follows an optimization is also presented.

摘要

外照射放疗中的逆向计划通常需要一个标量目标函数,该函数纳入重要性因子,以模拟计划者在相互冲突的目标之间的偏好。定义这些重要性因子并非易事,且常常导致一个迭代过程,在此过程中重要性因子成为优化问题的变量。为避免逆向计划的这一缺点,有人建议使用更适合多目标优化的算法(如进化算法)进行优化。然而,许多逆向计划软件,包括我们机构开发的基于模拟退火的软件,都不包含面向多目标的算法。这项工作研究了一种改进的模拟退火算法在多目标优化框架中用于驱动基于射野的调强放疗逆向计划软件时的性能。对于一些涉及胃癌患者的测试案例,使用这种新算法可使优化速度比传统模拟退火算法提高略超过两倍,同时能非常接近标准模拟退火产生的解决方案。还展示了一个简单的图形用户界面,旨在便于在优化之后进行决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验