Ramaprabhu P, Dimonte Guy, Young Yuan-Nan, Calder A C, Fryxell B
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 2):066308. doi: 10.1103/PhysRevE.74.066308. Epub 2006 Dec 20.
We report on the behavior of a single-wavelength Rayleigh-Taylor flow at late times. The calculations were performed in a long square duct (lambda x lambda x 8lambda), using four different numerical simulations. In contradiction with potential flow theories that predict a constant terminal velocity, the single-wavelength Rayleigh-Taylor problem exhibits late-time acceleration. The onset of acceleration occurs as the bubble penetration depth exceeds the diameter of bubbles, and is observed for low and moderate density differences. Based on our simulations, we provide a phenomenological description of the observed acceleration, and ascribe this behavior to the formation of Kelvin-Helmholtz vortices on the bubble-spike interface that diminish the friction drag, while the associated induced flow propels the bubbles forward. For large density ratios, the formation of secondary instabilities is suppressed, and the bubbles remain terminal consistent with potential flow models.
我们报告了单波长瑞利 - 泰勒流在后期的行为。计算是在一个长方管(λ×λ×8λ)中进行的,使用了四种不同的数值模拟。与预测恒定终端速度的势流理论相反,单波长瑞利 - 泰勒问题在后期呈现加速现象。当气泡穿透深度超过气泡直径时,加速开始出现,并且在低密度和中等密度差的情况下都能观察到。基于我们的模拟,我们对观察到的加速现象进行了唯象描述,并将这种行为归因于在气泡 - 尖峰界面上形成的开尔文 - 亥姆霍兹涡旋,这些涡旋减小了摩擦阻力,而相关的诱导流推动气泡向前。对于大密度比,二次不稳定性的形成受到抑制,气泡保持终端状态,这与势流模型一致。