Suppr超能文献

用于可靠跌倒检测的可穿戴传感器。

Wearable sensors for reliable fall detection.

作者信息

Chen Jay, Kwong Karric, Chang Dennis, Luk Jerry, Bajcsy Ruzena

机构信息

Dept. of Electr. Eng., California Univ., Berkeley, CA.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2005;2005:3551-4. doi: 10.1109/IEMBS.2005.1617246.

Abstract

Unintentional falls are a common cause of severe injury in the elderly population. By introducing small, non-invasive sensor motes in conjunction with a wireless network, the Ivy Project aims to provide a path towards more independent living for the elderly. Using a small device worn on the waist and a network of fixed motes in the home environment, we can detect the occurrence of a fall and the location of the victim. Low-cost and low-power MEMS accelerometers are used to detect the fall while RF signal strength is used to locate the person.

摘要

意外跌倒是老年人群严重受伤的常见原因。通过引入小型非侵入式传感器节点并结合无线网络,常春藤项目旨在为老年人提供一条通往更独立生活的途径。利用佩戴在腰部的小型设备以及家庭环境中的固定节点网络,我们能够检测跌倒的发生情况以及受害者的位置。低成本、低功耗的微机电系统(MEMS)加速度计用于检测跌倒,而射频信号强度则用于定位人员。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验