Yu Yihai, Dong Wubei, Altimus Cara, Tang Xiaojia, Griffith James, Morello Melissa, Dudek Lisa, Arnold Jonathan, Schüttler Heinz-Bernd
Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA.
Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2809-14. doi: 10.1073/pnas.0611005104. Epub 2007 Feb 14.
A diverse array of organisms from bacteria to humans may have evolved the ability to tell time in the presence or absence of external environmental cues. In the lowly bread mould, Neurospora crassa, biomolecular reactions involving the white-collar-1 (wc-1), white-collar-2 (wc-2), and frequency (frq) genes and their products constitute building blocks of a biological clock. Here we use genetic network models to explain quantitatively, from a systems perspective, how these building blocks interact, and how a complex trait like clock oscillation emerges from these interactions. We use a recently developed method of genetic network identification to find an ensemble of oscillating network models quantitatively consistent with available RNA and protein profiling data on the N. crassa clock. Predicted key features of the N. crassa clock system are a dynamically frustrated closed feedback loop, cooperativity in frq gene activation, and/or WC-1/WC-2 protein complex deactivation and substantial posttranscriptional enhancement of wc-1 RNA lifetime. Measuring the wc-1 mRNA lifetime provides a critical test of the genetic networks.
从细菌到人类,各种各样的生物体可能已经进化出在有无外部环境线索的情况下分辨时间的能力。在低等的面包霉菌粗糙脉孢菌中,涉及白领-1(wc-1)、白领-2(wc-2)和频率(frq)基因及其产物的生物分子反应构成了生物钟的组成部分。在这里,我们使用遗传网络模型从系统角度定量解释这些组成部分如何相互作用,以及像时钟振荡这样的复杂特性如何从这些相互作用中产生。我们使用一种最近开发的遗传网络识别方法来找到一组振荡网络模型,这些模型与粗糙脉孢菌生物钟上可用的RNA和蛋白质谱数据在数量上一致。粗糙脉孢菌生物钟系统的预测关键特征是动态受阻的闭合反馈回路、frq基因激活中的协同作用和/或WC-1/WC-2蛋白复合物失活以及wc-1 RNA寿命的大量转录后增强。测量wc-1 mRNA寿命为遗传网络提供了一个关键测试。