Suppr超能文献

粗糙脉孢菌生物钟的遗传网络

A genetic network for the clock of Neurospora crassa.

作者信息

Yu Yihai, Dong Wubei, Altimus Cara, Tang Xiaojia, Griffith James, Morello Melissa, Dudek Lisa, Arnold Jonathan, Schüttler Heinz-Bernd

机构信息

Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2809-14. doi: 10.1073/pnas.0611005104. Epub 2007 Feb 14.

Abstract

A diverse array of organisms from bacteria to humans may have evolved the ability to tell time in the presence or absence of external environmental cues. In the lowly bread mould, Neurospora crassa, biomolecular reactions involving the white-collar-1 (wc-1), white-collar-2 (wc-2), and frequency (frq) genes and their products constitute building blocks of a biological clock. Here we use genetic network models to explain quantitatively, from a systems perspective, how these building blocks interact, and how a complex trait like clock oscillation emerges from these interactions. We use a recently developed method of genetic network identification to find an ensemble of oscillating network models quantitatively consistent with available RNA and protein profiling data on the N. crassa clock. Predicted key features of the N. crassa clock system are a dynamically frustrated closed feedback loop, cooperativity in frq gene activation, and/or WC-1/WC-2 protein complex deactivation and substantial posttranscriptional enhancement of wc-1 RNA lifetime. Measuring the wc-1 mRNA lifetime provides a critical test of the genetic networks.

摘要

从细菌到人类,各种各样的生物体可能已经进化出在有无外部环境线索的情况下分辨时间的能力。在低等的面包霉菌粗糙脉孢菌中,涉及白领-1(wc-1)、白领-2(wc-2)和频率(frq)基因及其产物的生物分子反应构成了生物钟的组成部分。在这里,我们使用遗传网络模型从系统角度定量解释这些组成部分如何相互作用,以及像时钟振荡这样的复杂特性如何从这些相互作用中产生。我们使用一种最近开发的遗传网络识别方法来找到一组振荡网络模型,这些模型与粗糙脉孢菌生物钟上可用的RNA和蛋白质谱数据在数量上一致。粗糙脉孢菌生物钟系统的预测关键特征是动态受阻的闭合反馈回路、frq基因激活中的协同作用和/或WC-1/WC-2蛋白复合物失活以及wc-1 RNA寿命的大量转录后增强。测量wc-1 mRNA寿命为遗传网络提供了一个关键测试。

相似文献

1
A genetic network for the clock of Neurospora crassa.粗糙脉孢菌生物钟的遗传网络
Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2809-14. doi: 10.1073/pnas.0611005104. Epub 2007 Feb 14.
4
A kinase for light and time.一种与光和时间相关的激酶。
Mol Microbiol. 2005 Apr;56(2):299-302. doi: 10.1111/j.1365-2958.2005.04546.x.
5
The molecular workings of the Neurospora biological clock.粗糙脉孢菌生物钟的分子机制。
Novartis Found Symp. 2003;253:184-98; discussion 102-9, 198-202, 281-4.
6
Systems biology of the clock in Neurospora crassa.粗糙脉孢菌生物钟的系统生物学
PLoS One. 2008 Aug 29;3(8):e3105. doi: 10.1371/journal.pone.0003105.

引用本文的文献

3
6
Continuous Metabolism by NMR.核磁共振连续代谢分析
Front Mol Biosci. 2019 Apr 30;6:26. doi: 10.3389/fmolb.2019.00026. eCollection 2019.
8
Homogeneous Time Constants Promote Oscillations in Negative Feedback Loops.均匀的时间常数促进负反馈回路中的振荡。
ACS Synth Biol. 2018 Jun 15;7(6):1481-1487. doi: 10.1021/acssynbio.7b00442. Epub 2018 May 14.
9
The best models of metabolism.最佳代谢模型。
Wiley Interdiscip Rev Syst Biol Med. 2017 Nov;9(6). doi: 10.1002/wsbm.1391. Epub 2017 May 19.

本文引用的文献

4
The International HapMap Project.国际人类基因组单体型图计划
Nature. 2003 Dec 18;426(6968):789-96. doi: 10.1038/nature02168.
5
A detailed predictive model of the mammalian circadian clock.哺乳动物生物钟的详细预测模型。
Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14806-11. doi: 10.1073/pnas.2036281100. Epub 2003 Dec 1.
6
Statistical mechanical approaches to models with many poorly known parameters.针对具有许多参数未知的模型的统计力学方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 1):021904. doi: 10.1103/PhysRevE.68.021904. Epub 2003 Aug 12.
7
Finding genes that underlie complex traits.寻找构成复杂性状的基因。
Science. 2002 Dec 20;298(5602):2345-9. doi: 10.1126/science.1076641.
8
Oscillating systems. On emerging coherence.振荡系统。关于新兴的相干性。
Science. 2002 Dec 20;298(5602):2336-7. doi: 10.1126/science.1072560.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验